Rút gọn
2u(1+u-v) -v(1-2u+v)
rút gọn biểu thức
a .4x^2(5x^3-2x+3)
b . 2u (1+u-v)-v(1-2u+v)
a) 4x^2(5x^3 - 2x + 3)
= 20x^5 - 8x^3 + 12x^2
b) 2u(1 + u - v) - v(1 - 2u + v)
= 2u + 2u^2 - v - v^2
Rút gọn
2u(1+u-v) - v(1-2u+v)
\(2u\left(1+u-v\right)-v\left(1-2y+v\right)\)
\(=2u+2u^2-2uv-u+2uv-v^2\)
\(=u+2y^2-v^2\)
Biểu diễn các đa thức sau dưới dạng bình phương của 1 tổng:
a) x^2+2x(y+1)+y^2+2y+1
b) u^2+v^2+2u+2v+2(u+1)(v+1)+2
a, \(x^2+2x\left(y+1\right)+y^2+2y+1=\left(x^2+2xy+y^2\right)+\left(2x+2y\right)+1\)
\(=\left(x+y\right)^2+2\left(x+y\right)+1=\left(x+y+1\right)^2\)
b, \(u^2+v^2+2u+2v+2\left(u+1\right)\left(v+1\right)+2\)
\(=u^2+v^2+2u+2v+2uv+2u+2v+2+2\)
\(=\left(u^2+2uv+v^2\right)+\left(4u+4v\right)+4\)
\(=\left(u+v\right)^2+4\left(u+v\right)+2^2=\left(u+v+2\right)^2\)
1.
a) \(A=x^2+2x\left(y+1\right)+y^2+2y+1\)
\(A=x^2+2x\left(y+1\right)+\left(y+1\right)^2\)
\(A=\left(x+y+1\right)^2\)
b) \(B=u^2+v^2+2u+2v+2\left(u+1\right)\left(v+1\right)+2\)\(B=u^2+v^2+2u+2v+2\left(u+1\right)\left(v+1\right)+1+1\)\(B=\left(u^2+2u+1\right)+2\left(u+1\right)\left(v+1\right)+\left(v^2+2v+1\right)\)\(B=\left(u+1\right)^2+2\left(u+1\right)\left(v+1\right)+\left(v+1\right)^2\)\(B=\left(u+1+v+1\right)^2=\left(u+v+2\right)^2\)
tik mik nha !!!
U=(2,-2) V=(3,-2) a=-2u+v
vecto a=-2*vecto u+vecto v
=>xa=-2*2+3=-1 và ya=-2*3+(-2)=-8
viết các biểu thức sau dưới dạng bình phương của 1 tổng
a) x2+y2+2x(y+1)+2y+1
b) u2+v2+2u+2v+2(u+1)(v+1)+2
a.) \(A=x^2+y^2+1+2xy+2x+2y=\left(x+y+1\right)^2.\)
b.) \(B=u^2+v^2+2u+2v+2\left(u+1\right)\left(v+1\right)+2=u^2+2u+1+2\left(u+1\right)\left(v+1\right)+v^2+2v+1\)
\(B=\left(u+1\right)^2+2\left(u+1\right)\left(v+1\right)+\left(v+1\right)^2=\left(u+1+v+1\right)^2=\left(u+v+2\right)^2\)
Giả sử số tự nhiên a chia cho 7 dư 3. CMR a chia cho 7 dư 2
rút gọn
B=\(\dfrac{2u+\sqrt{uv}-3v}{2u-5\sqrt{uv}+3v}\) với \(u\ge\)0,\(v\ge0\) và\(u\ne\dfrac{9}{4}v\)
\(B=\dfrac{2u+\sqrt{uv}-3v}{2u-5\sqrt{uv}+3v}\)
\(=\dfrac{2u+3\sqrt{uv}-2\sqrt{uv}-3v}{2u-2\sqrt{uv}-3\sqrt{uv}+3v}\)
\(=\dfrac{\sqrt{u}.\left(2\sqrt{u}+3\sqrt{v}\right)-\sqrt{v}.\left(2\sqrt{u}+3\sqrt{v}\right)}{2\sqrt{u}.\left(\sqrt{u}-\sqrt{v}\right)-3\sqrt{v}.\left(\sqrt{u}-\sqrt{v}\right)}\)
\(=\dfrac{\left(2\sqrt{u}+3\sqrt{v}\right)\left(\sqrt{u}-\sqrt{v}\right)}{\left(\sqrt{u}-\sqrt{v}\right)\left(2\sqrt{u}-3\sqrt{v}\right)}\)
\(=\dfrac{2\sqrt{u}+3\sqrt{v}}{2\sqrt{u}-3\sqrt{v}}\\ =\dfrac{4u+12\sqrt{uv}+9v}{4u-9v}\)
Cho số A= (u+2v+1)(2u-2v+2)
Chứng minh rằng: Nếu u,v là các số tự nhiên thì A là số chẵn.
xem lại đề bạn ơi. nếu( u+2v+1)+(2u-2v+2)=3u+3 và chưa chắc cái này đã lẻ
rút gọn rồi tính giá trị của biểu thức
a, A=\(s(s^2-1) + t(t^2+s) với t=-1;s=1\)
b, B=\(u^2(u-v) - v(v^2-u^2) tại u=-0,5 ; v=-1/2\)
bn tự thay t và s mà đề cho vào rồi tính bình thường
còn câu cuối tương tự
Rút gọn rồi tính giá trị biêu thức:
a) I = s ( s 2 - t ) + t ( t 2 + s ) tại t = -1 và s = 1;
b) N = u 2 ( u - v ) - v ( v 2 - u 2 ) tại u = 0,5 và v = − 1 2 .
a) Rút gọn I = s 3 + t 3 Þ I = 0.
b) Rút gọn N = u 3 – v 3 Þ N = 0.