Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phan Hà An
Xem chi tiết
Thịnh Phạm Công
18 tháng 10 2016 lúc 21:59

bài này dễ mà bạn

Phan Hà An
18 tháng 10 2016 lúc 22:07

Vậy bn có thể giúp mk đc k v??

Thái Thùy Linh
Xem chi tiết
Ngô Tấn Đạt
19 tháng 10 2016 lúc 19:59

\(n^4-1=\left(n^2-1\right)\left(n^2+1\right)\)

n lẻ => n2 lẻ => n2 chia 8 dư 1

=> n2-1 chia hết cho 8 => n4-1 chia hết cho 8

vũ hoàng anh dương
5 tháng 1 2017 lúc 20:37

1.

ta có

x3 + 6x2+ 12x = 0

=> x3 + 3.x2.2 + 3.x.22 +23 = 0 +23

=> ( x + 2)3 = 23

=> x + 2 = 2

=>x = 0

Đức Huy ABC
6 tháng 1 2017 lúc 22:15

1. \(x^3+6x^2+12x=0\)

<=>\(x\left(x^2+6x+12\right)=0\)(1)

\(x^2+6x+12=\left(x+3\right)^2+3>0\) với mọi x nên:

(1)<=>x=0

Vậy x=0

2. Chú ý:\(\left(a+b\right)^4=a^4+4a^3b+6a^2b^2+4ab^3+b^4\)

Vì n lẻ nên đặt n=2k+1(k thuộc N)

Ta có:\(n^4-1=\left(2k+1\right)^4-1=16k^4+32k^3+24k^2+8k+1-1=16k^4+32k^3+24k^2+8k=8\left(2k^4+4k^3+3k^2+k\right)⋮8\)

Ta được đpcm.

yuo yuo
Xem chi tiết
Hàn Vũ Nhi
Xem chi tiết
Nguyễn Đăng Minh
17 tháng 9 2019 lúc 22:37

a) thay 2k+1 vào biểu thức ta có

a)=4k^2+4k+1+8k+4+3

=4k(k+1) + 8k +8

có: k(k+1) là 2 số nguyên liên tiếp => chia hết cho 2 => 4k(k+1) chia hết cho 8

có: 8k;8 chia hết 8

=>n^2+4n+3 chia hết cho 8

Nguyễn Linh Chi
18 tháng 9 2019 lúc 14:15

b.Câu hỏi của Hàn Vũ Nhi - Toán lớp 8 - Học toán với OnlineMath

Nguyên Lê
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 9 2021 lúc 16:24

a. 

Đề bài sai, ví dụ \(n=1\) lẻ nhưng  \(1^2+4.1+8=13\) ko chia hết cho 8

b.

n lẻ \(\Rightarrow n=2k+1\)

\(n^3+3n^2-n-3=n^2\left(n+3\right)-\left(n+3\right)=\left(n^2-1\right)\left(n+3\right)=\left(n-1\right)\left(n+1\right)\left(n+3\right)\)

\(=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1+3\right)\)

\(=8k\left(k+1\right)\left(k+2\right)\)

Do \(k\left(k+1\right)\left(k+2\right)\) là tích 3 số tự nhiên liên tiếp nên chia hết cho 6

\(\Rightarrow8k\left(k+1\right)\left(k+2\right)\) chia hết cho 48

Nguyễn Thị Phương An
Xem chi tiết
alibaba nguyễn
20 tháng 4 2018 lúc 9:00

a/ \(n=2m+1\)

\(\Rightarrow\left[\left(2m+1\right)^2+8\left(2m+1\right)+15\right]=4\left(m+2\right)\left(m+3\right)⋮8\)

b/ \(\frac{n^2+1}{n+1}=n-1+\frac{2}{n+1}\)

Để nó chia hết thi n + 1 là ước nguyên của 2

\(\Rightarrow\left(n+1\right)=\left(-2;-1;1;2\right)\)

\(\Rightarrow n=\left(-3,-2,0,1\right)\)

Hàn Vũ Nhi
Xem chi tiết
Nguyễn Tấn Phát
18 tháng 9 2019 lúc 14:12

Ta có: \(n^3+3n^2-n-3\)

\(=\left(n^3+3n^2\right)-\left(n+3\right)\)

\(=n^2\left(n+3\right)-\left(n+3\right)\)

\(=\left(n+3\right)\left(n^2-1\right)\)

\(=\left(n+3\right)\left(n-1\right)\left(n+1\right)\text{ (1)}\)

\(\text{Vì n = 2k + 1 (số lẻ) nên }\hept{\begin{cases}n+3=2k+1+3=2k+4\\n-1=2k+1-1=2k\\n+1=2k+1+1=2k+2\end{cases}}\)

\(\text{(1) = }\left(2k+4\right)\left(2k\right)\left(2k+2\right)\)

\(=2.\left(k+2\right).2k.2.\left(k+1\right)\)

\(=8k.\left(k+2\right)\left(k+1\right)\)

\(\text{Ta thấy }8k\left(k+1\right)\left(k+2\right)\text{chia hết cho 2 và chia hết cho 8}\)

\(\text{Nên }8k\left(k+1\right)\left(k+2\right)\text{ chia hết cho 16 (8 x 2 =16) (2)}\)

\(\text{Mà }k\left(k+1\right)\left(k+2\right)\text{ là tích của 3 số tự nhiện liên tiếp }\)

\(\text{Nên }k\left(k+1\right)\left(k+2\right)\text{ chia hết cho 3}\)

\(\text{Hay }8k\left(k+1\right)\left(k+2\right)\text{ chia hết cho 3 (3)}\)

\(\text{Từ (2) và (3) suy ra: }8k\left(k+1\right)\left(k+2\right)\text{ chia hết cho 48 (16 x 3 = 48)}\)

                                \(\text{hay }n^3+3n^2-n-3\text{ chia hết cho 48 }\left(\text{ĐPCM}\right)\)

Nguyễn Linh Chi
18 tháng 9 2019 lúc 14:13

Ta có:

 \(n^3+3n^2-n-3=n^2\left(n+3\right)-\left(n+3\right)=\left(n+3\right)\left(n^2-1\right)=\left(n+3\right)\left(n-1\right)\left(n+1\right)\)

Với n=2k+1. Do đó ta có:

\(n^3+3n^2-n-3=\left(2k+1+3\right)\left(2k+1-1\right)\left(2k+1+1\right)=\left(2k+4\right)\left(2k+2\right)\left(2k\right)\)

\(=8\left(k+2\right)\left(k+1\right)k\)

Vì \(k;\left(k+1\right)\)là hai số tự nhiên liên tiếp => \(k\left(k+1\right)⋮2\)

Vì \(k;\left(k+1\right);\left(k+2\right)\)là ba số tự nhiên liên tiếp => \(k\left(k+1\right)\left(k+2\right)⋮3\)

mà (2; 3) =1

=> \(k\left(k+1\right)\left(k+2\right)⋮6\)

=> \(8k\left(k+1\right)\left(k+2\right)⋮48\)

Pham Khanh Linh
Xem chi tiết
KonnNi
Xem chi tiết
Nguyễn Linh Chi
23 tháng 10 2019 lúc 9:56

Câu hỏi của Lưu Thanh Vy - Toán lớp 8 - Học toán với OnlineMath

Em tham khaoe link trên.

Khách vãng lai đã xóa