CMR với mọi số thực k thì 2016k+3 không phải là lập phương của một số nguyên
Chứng minh rằng với k là số nguyên thì 2016k+3 không phải là lập phương của một số nguyên.
Giả sử 2016k + 3 = a3 với k và a là số nguyên.
Suy ra: 2016k = a3 – 3
Ta thấy 2016k 7
Nên ta chứng minh a3 – 3 không chia hết cho 7 thì 2016k + 3 ≠ a3
Thật vậy: Ta biểu diễn a = 7m + r, với r .
Trong tất cả các trường hợp trên ta đều có a3 – 3 không chia hết cho 7.
Mà 2016k luôn chia hết cho 7,
nên a3 – 3 2016k.
Bài toán được chứng minh
Chứng minh rằng: Với k là số nguyên thì 2016k+3 không phải là lập phương của 1 số nguyên
Chứng minh răng nếu k là một số nguyên thì 2016k+3 không là số lập phương. (Số lập phương là lập phương của số nguyên)
BẠN THỬ HỎI CÂU NÀY TRÊN GOOGLE COI, MÌNH THẤY CÓ ĐÓ.
CMR; với k là số nguyên thì 2016k+3 ko phải là lập phương của 1 số nguyên.
Lời giải:
Ta sẽ chứng minh , một số lập phương khi chia $7$ chỉ có thể có dư là \(0,1,6\)
Thật vậy: Xét số \(a^3\), có các TH sau:
+) \(a\equiv 0\pmod 7\Rightarrow a^3\equiv 0\pmod 7\)
+) \(a\equiv \pm 1\pmod 7\Rightarrow a^3\equiv \pm 1\pmod 7\)
\(\Leftrightarrow a^3\equiv 1,6\pmod 7\)
+) \(a\equiv \pm 2\pmod 7\Rightarrow a^3\equiv \pm 8\pmod 7\)
\(\Leftrightarrow a^3\equiv 1,6\pmod 7\)
+) \(a\equiv \pm 3\pmod 7\Rightarrow a^3\equiv \pm 27\pmod 7\)
\(\Leftrightarrow a^3\equiv 1,6\pmod 7\)
Do đó, \(a^3\equiv 0,1,6\pmod 7\) (đpcm)
Mà \(2016k+3=7.288k+3\equiv 3\pmod 7\)
Cho nên , \(2016k+3\) không thể là lập phương của một số nguyên.
Chứng minh với n là số nguyên thì 2016n +3 không là lập phương của một số nguyên. Mọi người giải giúp nhé! Thanks ạ!
1/ CM: Tỏng các Lập phương của ba số nguyên chia hết cho 6 chỉ khi tổng 3 số đó chia hết cho 6
2/ Cho 2 số lẽ có hiệu các lập phương chia hết cho 8 chứng minh hiệu hai số đó cũng chia hét cho 8
3/CM : Nếu bình phương thiếu của tổng hai số nguyên chia hết cho9 thì ttichs hai số đó cũng chia hết cho 9
4/ CM tổng các lập phương của 3 số nguyên liên tiếp thì chia hết cho 9
5/CM n^5-5n^3+4n chia hết cho 120 vơi mọi số nguyên n
6/CM n^3+3n^2+n+3 chia hết cho 48 vơi mọi số lẻ n
7/ CM n^4+4n^3-4n^2+16n chia hết chi 384 với mọi số nguyên n
8/CMR với mọi số nguyên n thì n^2+11n+39 không chia hết chi 49
9/ CM lấy tich của 3 số nguyên liên tiếp +1 , được một số chính phương
10/CMR với mọi số tự nhiên n>1:
a/ số n^4 +4 là hợp số
b/ số n^4+4k^4 là hợp số (k là số tự nhiên)
11/ Tính giá trị của biểu thức (1+ab-b^4)(a^4+1) với a=2^7, b=5
12/ Số 2^32+1 có là số nguyên tố không?
13/ CMR Số 11....1-22...2 là một số chính phương(có 2n số 1 và n số 2)
14/ CMR số 111....12...2 (có n số 1 và n số 2) là tích hai số nguyên liên tiếp với mọi số nguyên dương n
15/ Tìm số có 3 chữ số sao cho chia nó cho 11 được thương bằng tổng các chữ số bị chia
sao dài dòng quá vậy, như thế thì ai mà làm nổi, bạn phải hỏi từng bài 1 chứ
Nhìn là muốn chạy rùi
^-^
p thử lên mạng mà tra từng câu 1 mik nghĩ là có
1/ CM: Tỏng các Lập phương của ba số nguyên chia hết cho 6 chỉ khi tổng 3 số đó chia hết cho 6
2/ Cho 2 số lẽ có hiệu các lập phương chia hết cho 8 chứng minh hiệu hai số đó cũng chia hét cho 8
3/CM : Nếu bình phương thiếu của tổng hai số nguyên chia hết cho9 thì ttichs hai số đó cũng chia hết cho 9
4/ CM tổng các lập phương của 3 số nguyên liên tiếp thì chia hết cho 9
5/CM n^5-5n^3+4n chia hết cho 120 vơi mọi số nguyên n
6/CM n^3+3n^2+n+3 chia hết cho 48 vơi mọi số lẻ n
7/ CM n^4+4n^3-4n^2+16n chia hết chi 384 với mọi số nguyên n
8/CMR với mọi số nguyên n thì n^2+11n+39 không chia hết chi 49
9/ CM lấy tich của 3 số nguyên liên tiếp +1 , được một số chính phương
10/CMR với mọi số tự nhiên n>1:
a/ số n^4 +4 là hợp số
b/ số n^4+4k^4 là hợp số (k là số tự nhiên)
11/ Tính giá trị của biểu thức (1+ab-b^4)(a^4+1) với a=2^7, b=5
12/ Số 2^32+1 có là số nguyên tố không?
13/ CMR Số 11....1-22...2 là một số chính phương(có 2n số 1 và n số 2)
14/ CMR số 111....12...2 (có n số 1 và n số 2) là tích hai số nguyên liên tiếp với mọi số nguyên dương n
15/ Tìm số có 3 chữ số sao cho chia nó cho 11 được thương bằng tổng các chữ số bị chia
Làm 1;2;3;4 bài 1 lần thôi chứ sao 15 bài 1 lúc ?
Nghĩ ai rảnh mà giải ah ?
1 Tìm tất cả các số nguyên tố p và q sao cho tồn tại STN m thỏa mãn: p.q / p+q =m2+1/m+1
2 Cho các số nguyên dương x;y;z thỏa mãn X2 +Y2=Z2
a/CM: X*Y chia hết cho 12
b/CM: X3Y-XY3 chia hết cho7
3 CMR với k là số ngyên thì 2016k+3 ko là lập phương 1 số nguyên
1,CMR với mọi số nguyên tố p,p>2 thì 4p+1 không phải là số chính phương