Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Ngọc Linh
Xem chi tiết
Vo Lequang
Xem chi tiết
Akai Haruma
22 tháng 12 2021 lúc 9:42

Lời giải:
$2(x+y)=3(y+z)=4(x+z)$

$\Rightarrow \frac{x+y}{6}=\frac{y+z}{4}=\frac{x+z}{3}$ (chia cả 3 vế cho $12$)

Đặt giá trị trên là $t$

$\Rightarrow x+y=6t; y+z=4t; z+x=3t$

$\Rightarrow x+y+z=(6t+4t+3t):2=6,5t$

$x=6,5t-4t=2,5t; y=6,5t-3t=3,5t; z=6,5t-6t=0,5t$. Khi đó:
$P=\frac{2,5t}{3,5t}+\frac{3,5t}{0,5t}+\frac{0,5t}{2,5t}$

$=\frac{2,5}{3,5}+\frac{3,5}{0,5}+\frac{0,5}{2,5}=\frac{277}{35}$

Đào Thị Bạch Cúc
Xem chi tiết
Lã Nguyễn Gia Hy
4 tháng 9 2017 lúc 23:28

Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\frac{1}{x+y+z}=0\)

\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y+z-z}{z\left(x+y+z\right)}=0\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{z\left(x+y+z\right)}=0\)

\(\Leftrightarrow\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}\right)=0\Leftrightarrow\left(x+y\right)\left(\frac{zx+z^2+zy+xy}{xyz\left(x+y+z\right)}\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left[z\left(x+z\right)+y\left(x+z\right)\right]=0\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)

\(\Rightarrow\left(x^2-y^2\right)\left(y^3+z^3\right)\left(z^4-x^4\right)=0\).

Vậy  \(M=\frac{3}{4}+\left(x^2-y^2\right)\left(y^3+z^3\right)\left(z^4-x^4\right)=\frac{3}{4}+0=\frac{3}{4}\)

Đào Thị Bạch Cúc
5 tháng 9 2017 lúc 16:47

thank Gia Hy

KuDo Shinichi
Xem chi tiết
Phước Nguyễn
9 tháng 3 2016 lúc 8:42

Bạn tham khảo nhé!

http://olm.vn/hoi-dap/question/479780.html

Phước Nguyễn
9 tháng 3 2016 lúc 8:42

Lời giải cho bài của bạn ở đây nhé!  http://olm.vn/hoi-dap/question/479780.html

Trần Ngọc Linh
Xem chi tiết
Akai Haruma
22 tháng 12 2021 lúc 9:43

Bạn tham khảo tại đây:

https://hoc24.vn/cau-hoi/cho-xyz-khac-0-thoa-man-2-xy-3yz4zx-tinh-p-dfracxydfracyzdfraczx.3861996653762

Xem chi tiết
trần thị hằng
Xem chi tiết
Thân Thị Phương Linh
9 tháng 3 2019 lúc 5:16

Hello

Lê Khánh Linh
Xem chi tiết
lê đức anh
30 tháng 10 2021 lúc 11:19

Ta có:

\(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{zx}{z+x}\rightarrow\frac{x+y}{xy}=\frac{y+z}{yz}=\frac{z+x}{zx}\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}=\frac{1}{y}+\frac{1}{z}=\frac{1}{z}+\frac{1}{x}\Rightarrow\frac{1}{x}=\frac{1}{y}=\frac{1}{z}\Rightarrow x=y=z\)

Thay tất cả giá trị x,y,z vào M ta được:

\(M=\frac{2020x^3+2020y^3+2020z^3}{x^3+y^3+z^3}+\frac{2021x^5+2021y^5}{x^5+y^5}\)

\(\Rightarrow M=\frac{2020\left(x^3+y^3+z^3\right)}{x^3+y^3+z^3}+\frac{2021\left(x^5+y^5\right)}{x^5+y^5}\)

\(\Rightarrow M=2020+2021=4041\)

Khách vãng lai đã xóa
My Hà
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 1 2022 lúc 18:48

\(x^2+y^2+z^2=xy+yz+zx\)

\(\Leftrightarrow2x^2+2y^2+2z^2=2xy+2yz+2zx\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(x^2-2zx+z^2\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-z=0\\x-z=0\end{matrix}\right.\) \(\Leftrightarrow x=y=z\)

Mà \(x+y+z=-3\Rightarrow x=y=z=-1\)

\(\Rightarrow x^2+y^3+z^4=\left(-1\right)^2+\left(-1\right)^3+\left(-1\right)^4=1\)