\(\sqrt{900}\)=
Tính tổng S = \(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{900\sqrt{899}+899\sqrt{900}}\)
Xét \(a_n=\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}\)
\(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\frac{\sqrt{n}}{n}-\frac{\sqrt{n+1}}{n+1}\)
\(\Rightarrow S=\frac{\sqrt{1}}{1}-\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}-\frac{\sqrt{3}}{3}+...+\frac{\sqrt{899}}{899}-\frac{\sqrt{900}}{900}\)
\(S=1-\frac{\sqrt{900}}{900}=1-\frac{1}{30}=\frac{29}{30}\)
\(\sqrt{14+\sqrt{16900}}-\sqrt{19+\sqrt{900}}+\sqrt{45+\sqrt{3025}}\)
\(\sqrt{14+\sqrt{16900}}-\sqrt{19+\sqrt{900}}+\sqrt{45+\sqrt{3025}}\)
\(=\sqrt{14+\sqrt{130^2}}-\sqrt{19+\sqrt{30^2}}+\sqrt{45+\sqrt{55^2}}\)
\(=\sqrt{14+130}-\sqrt{19+30}+\sqrt{45+55}\)
\(=\sqrt{144}-\sqrt{49}+\sqrt{100}\)
\(=\sqrt{12^2}-\sqrt{7^2}+\sqrt{10^2}\)
\(=12-7+10\)
\(=5+10\)
\(=15\)
Mk nghĩ bạn cx lm đc mak cần J đăng :)
\(\sqrt{14+\sqrt{16900}}-\sqrt{19+\sqrt{900}}+\sqrt{45+\sqrt{3025}}\)
\(=\sqrt{14+130}-\sqrt{19+30}+\sqrt{45+55}=12-7+10=15\)
Mk đang rảnh nên thik lm mấy câu dễ dễ "___"
\(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{899}+\sqrt{900}}\)
Rút gọn biểu thức
\(=\dfrac{\left(\sqrt{1}-\sqrt{2}\right)}{1-2}+\dfrac{\sqrt{2}-\sqrt{3}}{2-3}+....+\dfrac{\sqrt{899}-\sqrt{900}}{899-900}\\ =\sqrt{900}-\sqrt{899}+\sqrt{899}-.....+\sqrt{3}-\sqrt{2}+\sqrt{2}-\sqrt{1}=\\ =\sqrt{900}-\sqrt{1}\\ =30-1=29\)
\(\sqrt{900}\div\sqrt{800}\)
\(\sqrt{900}:\sqrt{800}=30:20\sqrt{2}=\frac{3\sqrt{2}}{2}\)
Tính
\(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{899}+\sqrt{900}}\)
\(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+.....+\frac{1}{\sqrt{899}+\sqrt{900}}\)
=\(\frac{\sqrt{1}-\sqrt{2}}{1-2}+\frac{\sqrt{2}-\sqrt{3}}{2-3}+....+\frac{\sqrt{899}-\sqrt{900}}{899-900}\)
\(=\frac{\sqrt{1}-\sqrt{2}}{-1}+\frac{\sqrt{2}-\sqrt{3}}{-1}+....+\frac{\sqrt{899}-\sqrt{900}}{-1}\)
\(=\frac{\sqrt{1}-\sqrt{2}+\sqrt{2}-\sqrt{3}+....+\sqrt{899}-\sqrt{900}}{-1}\)
\(=\frac{\sqrt{1}-\sqrt{900}}{-1}\)
\(=\frac{1-30}{-1}=\frac{-29}{-1}=29\)
=
\(\sqrt{900}\)
BẠN ƠI LỚP 6 CHƯA CÓ HỌC CĂNG THẾ ĐÂU MÌNH LỚP 6 KHÔNG LÀM ĐƯỢC
Tính
\(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{899}+\sqrt{900}}\)
\(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{899}+\sqrt{900}}\)
\(=\frac{\sqrt{2}-\sqrt{1}}{\left(\sqrt{2}-\sqrt{1}\right)\left(\sqrt{2}+\sqrt{1}\right)}+\frac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}+...+\frac{\sqrt{900}-\sqrt{899}}{\left(\sqrt{900}-\sqrt{899}\right)\left(\sqrt{900}+\sqrt{899}\right)}\)
\(=\frac{\sqrt{2}-1}{2-1}+\frac{\sqrt{3}-\sqrt{2}}{3-2}+...+\frac{\sqrt{900}-\sqrt{899}}{900-899}\)
\(=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{3}+...+\sqrt{900}-\sqrt{899}\)
\(=\sqrt{900}-\sqrt{1}\)
\(=30-1\)
\(=29\)
Tính \(\sqrt{300+900.x}=2007\)
\(\sqrt{300+900.x}=2007\Rightarrow300+900.x=4028049\)
\(\Rightarrow900.x=4027749\Rightarrow x=4475,276667\)
Mk thật sự k chắc đâu đó! chúc bn hok tot~!
\(\sqrt{300+900.x}=2007\Rightarrow300+900.x=4028049\)
\(\Rightarrow900.x=4027749\Rightarrow x=4475,276667\)
\(\sqrt{300+900x}=2007\Rightarrow300+900x4028049\)
\(\Rightarrow900x=40227749\Rightarrow x=4475,276667\)
Cho 00<α<900 và \(sin\alpha+cos\alpha=\dfrac{\sqrt{5}}{2}\). Khi đó \(tan\alpha+cot\alpha=\)