\(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{899}+\sqrt{900}}\)
\(=\frac{\sqrt{2}-\sqrt{1}}{\left(\sqrt{2}-\sqrt{1}\right)\left(\sqrt{2}+\sqrt{1}\right)}+\frac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}+...+\frac{\sqrt{900}-\sqrt{899}}{\left(\sqrt{900}-\sqrt{899}\right)\left(\sqrt{900}+\sqrt{899}\right)}\)
\(=\frac{\sqrt{2}-1}{2-1}+\frac{\sqrt{3}-\sqrt{2}}{3-2}+...+\frac{\sqrt{900}-\sqrt{899}}{900-899}\)
\(=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{3}+...+\sqrt{900}-\sqrt{899}\)
\(=\sqrt{900}-\sqrt{1}\)
\(=30-1\)
\(=29\)