Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn văn đạt
Xem chi tiết
Mất nick đau lòng con qu...
21 tháng 1 2019 lúc 18:04

\(1)\)

\(VT=\left(\left|x-6\right|+\left|2022-x\right|\right)+\left|x-10\right|+\left|y-2014\right|+\left|z-2015\right|\)

\(\ge\left|x-6+2022-x\right|+\left|0\right|+\left|0\right|+\left|0\right|=2016\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-6\right)\left(2022-x\right)\ge0\left(1\right)\\x-10=y-2014=z-2015=0\left(2\right)\end{cases}}\)

\(\left(2\right)\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=10\\y=2014\\z=2015\end{cases}}\)

\(\left(1\right)\)

TH1 : \(\hept{\begin{cases}x-6\ge0\\2022-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge6\\x\le2022\end{cases}\Leftrightarrow}6\le x\le2022}\) ( nhận ) 

TH2 : \(\hept{\begin{cases}x-6\le0\\2022-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le6\\x\ge2022\end{cases}}}\) ( loại ) 

Vậy \(x=10\)\(;\)\(y=2014\) và \(z=2015\)

Mất nick đau lòng con qu...
21 tháng 1 2019 lúc 18:08

\(2)\)

\(VT=\left|x-5\right|+\left|1-x\right|\ge\left|x-5+1-x\right|=\left|-4\right|=4\)

\(VP=\frac{12}{\left|y+1\right|+3}\le\frac{12}{3}=4\)

\(\Rightarrow\)\(VT\ge VP\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-5\right)\left(1-x\right)\ge0\left(1\right)\\\left|y+1\right|=0\left(2\right)\end{cases}}\)

\(\left(1\right)\)

TH1 : \(\hept{\begin{cases}x-5\ge0\\1-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge5\\x\le1\end{cases}}}\) ( loại ) 

TH2 : \(\hept{\begin{cases}x-5\le0\\1-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le5\\x\ge1\end{cases}\Leftrightarrow}1\le x\le5}\) ( nhận ) 

\(\left(2\right)\)\(\Leftrightarrow\)\(y=-1\)

Vậy \(1\le x\le5\) và \(y=-1\)

Phạm Thùy Linh
Xem chi tiết
Hoàng Phúc
12 tháng 12 2015 lúc 15:23

x(x+y)=-45 (1)

y(x+y)=5   (2)

cộng (1) với (2),vế theo vế ta đc:

x(x+y)+y(x+y)=-45+5=-40

=>(x+y)^2=-40

vì (x+y)^2>0;-40<0

=>ko tìm đc cặp (x;y) thỏa mãn

=>số cặp (x;y) thỏa mãn là 0

tik nhé

Phạm Thùy Linh
Xem chi tiết
Bạch Dạ Y
Xem chi tiết
Đoàn Đức Hà
16 tháng 5 2021 lúc 14:55

\(\left(x+y+1\right)\left(xy+x+y\right)=5+2\left(x+y\right)\)

\(\Leftrightarrow\left(x+y+1\right)\left(xy+x+y\right)=3+2\left(x+y+1\right)\)

\(\Leftrightarrow\left(x+y+1\right)\left(xy+x+y-2\right)=3\)

Từ đây bạn xét các trường hợp và giải ra nghiệm. 

Khách vãng lai đã xóa
Đặng Trần Thảo Vi
Xem chi tiết
X1
27 tháng 1 2019 lúc 9:10

Ta có : \(\left|x-5\right|+\left|1-x\right|\ge\left|x-5+1-x\right|=\left|-4\right|=4\)

\(\Rightarrow\left|x-5\right|+\left|1-x\right|\ge4\left(1\right)\)

Ta lại có : \(\left|y+1\right|\ge0\Rightarrow\left|y+1\right|+3\ge3\)

\(\Rightarrow\frac{1}{\left|y+1\right|+3}\le\frac{1}{3}\)hay \(\frac{12}{\left|y+1\right|+3}\le\frac{12}{3}=4\left(2\right)\)

Theo đề ra ta có : \(\left|x-5\right|+\left|1-x\right|=\frac{12}{\left|y+1\right|+3}\left(3\right)\)

Từ (1) và (3), suy ra : Dấu "=" xảy ra khi và chỉ khi : 

\(\left(x-5\right)\left(1-x\right)=0\Leftrightarrow1\le x\le5\)

Từ (2) và (3), suy ra : Dấu "=" xảy ra khi và chỉ khi :

\(\frac{12}{\left|y+1\right|+3}=4\Leftrightarrow\left|y+1\right|+3=3\)

\(\Leftrightarrow\left|y+1\right|=0\Leftrightarrow y+1=0\Leftrightarrow y=-1\)

Vậy : \(x\in\left\{1;2;3;4;5\right\};y=\left(-1\right)\)

marian
Xem chi tiết
Bùi Thị Ngọc Yến Nhi
Xem chi tiết
Nguyễn Nhật Minh
Xem chi tiết
Mai Tiến Đỗ
Xem chi tiết