Cho tam giác ABC với A(-3,6) B(9,-10) và G(1/3,0) là trọng tâm. Tìm tọa độ C
Cho tam giác ABC với A(-3,6) B(9,-10) và G(1/3,0) là trọng tâm. Tìm tọa độ C
Gọi C(x;y) là tọa độ cần tìm
Ta có: \(x_G=\dfrac{x_A+x_B+x_C}{3}\)
hay: \(1=\dfrac{-3+9+x_C}{3}\) \(\Rightarrow x_C=-3\)
\(y_G=\dfrac{y_A+y_B+y_C}{3}\)
hay: \(0=\dfrac{6+\left(-10\right)+y_C}{3}\) \(\Rightarrow y_C=4\)
Vậy điểm C có tọa độ là: \(C\left(-3;4\right)\)
Trong không gian với hệ tọa độ Oxyz, cho tam giác A B C c ó A ( 1 ; − 2 ; 3 ) , B ( − 1 ; 0 ; 2 ) v à G ( 1 ; − 3 ; 2 ) là trọng tâm tam giác ABC. Tìm tọa độ điểm C
A. C ( 3 ; − 7 ; 1 )
B. C ( 2 ; − 4 ; − 1 )
C. C ( 1 ; − 1 ; − 3 )
D. C ( 3 ; 2 ; 1 )
Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có A(1;-2;3); B(-1;0;2) và G(1;-3;2) là trọng tâm tam giác ABC. Tìm tọa độ điểm C.
A. C(3;2;1)
B. C(2;-4;-1)
C. C(1;-1;-3)
D. C(3;-7;1)
Trong không gian với hệ tọa độ Oxyz, cho tam
giác ABC có A (1;-2;3), B (-1;0;2) và G (1;-3;2)
là trọng tâm tam giác ABC. Tìm tọa độ điểm C.
cho tam giác ABC với A<3,1> ,B<-1,-1> , C <6,0>
a, tính AB*AC
b, tính diện tích tam giác ABC
c, tìm tọa độ trực tâm H của tam giác ABC
d, tìm tọa độ trọng tâm G của tam giác ABC
e, tìm tọa độ tâm I của đường tròn ngoại tiếp tam giác ABC từ đó chứng minh rằng I,H,G thẳng hàng
Cho mặt phẳng Oxy, cho tam giác ABC với A(3;1), B(-1;-1), C(6;0)
a. Tính tọa độ trung điểm I của đoạn AB và trọng tâm G của tam giác ABC
b. Tính chu vi tam giác ABC và Cos A
c. Tìm tọa độ trực tâm H của tam giác ABC
* Giúp mình với ạ, mình đang cần gấp ạ *
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC với và . a) Tính tọa độ điểm G và vectơ ( với điểm G là trọng tâm tam giác ABC ). b) Tìm tọa độ điểm D là giao điểm của đường thẳng BC với trục hoành.
Đề thiếu hết dữ liệu tọa độ các điểm rồi bạn
Cho tam giác ABC biết A(1,1) B(2,3) và trọng tâm G trùng với gốc tọa độ. Tìm tọa độ trực tâm H và đỉnh C
Áp dụng công thức trọng tâm:
\(\left\{{}\begin{matrix}x_C=3x_G-x_A-x_B=-3\\y_C=3y_G-y_A-y_B=-4\end{matrix}\right.\) \(\Rightarrow C\left(-3;-4\right)\)
\(\Rightarrow\overrightarrow{CA}=\left(4;5\right)\) ; \(\overrightarrow{AB}=\left(1;2\right)\)
Đường cao d đi qua B vuông góc AC nên nhận \(\overrightarrow{CA}=\left(4;5\right)\) là 1 vtpt
Phương trình d:
\(4\left(x-2\right)+5\left(y-3\right)=0\Leftrightarrow4x+5y-23=0\)
Đường cao d1 đi qua C vuông góc AB nên nhận (1;2) là 1 vtpt
Phương trình d1:
\(1\left(x+3\right)+2\left(y+4\right)=0\Leftrightarrow x+2y+11=0\)
H là giao điểm d và d1 nên tọa độ thỏa mãn:
\(\left\{{}\begin{matrix}4x+5y-23=0\\x+2y+11=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{101}{3}\\y=-\dfrac{67}{3}\end{matrix}\right.\) \(\Rightarrow H\left(\dfrac{101}{3};-\dfrac{67}{3}\right)\)
Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có A(3;0;0), B(0;3;0) và C(0;0;3). Tìm tọa độ trọng tâm G của tam giác ABC.
A. G(3;3;3)
B. G(1;1;1)
C. G(2/3;2/3;2/3)
D. G(1/3;1/3;1/3).
Đáp án B
Tọa độ trọng tâm tam giác ABC là G(1;1;1).
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC với và . a) Tính tọa độ điểm G và vectơ ( với điểm G là trọng tâm tam giác ABC ). b) Gọi I là trung điểm của BC. Tìm tọa độ điểm D sao cho tứ giác ABID là hình bình hành.