Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Thị Xuân Hòa
Xem chi tiết
Đinh Quốc Tuấn
18 tháng 11 2018 lúc 20:32

lấy mẫu trừ đi (ax+by+cz)^2

Big City Boy
Xem chi tiết
Trần Minh Hoàng
27 tháng 12 2020 lúc 18:43

Ta có \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\Leftrightarrow ayz+bzx+cxy=0\).

Do đó: \(ax^2+by^2+cz^2=\left(ax+by+cz\right)\left(x+y+z\right)-axy-axz-byz-byx-czx-czy=0-xy\left(a+b\right)-yz\left(b+c\right)-zx\left(c+a\right)=0+xyc+yza+zxb=0\).

Bùi Đạt Khôi
Xem chi tiết
Võ Thị Quỳnh Giang
31 tháng 7 2017 lúc 21:28

đây là BĐT Bu-nhi-a-cốp-xki mà. chỉ cần nhân ra r đưa về hằng đẳng thức là đc

Bùi Đạt Khôi
31 tháng 7 2017 lúc 21:33

giai ho minh di

Thiên An
31 tháng 7 2017 lúc 21:36

Dành cho các bạn chuyên toán nè? | Yahoo Hỏi & Đáp

Bùi Đạt Khôi
Xem chi tiết
Nguyễn An
6 tháng 8 2017 lúc 9:43

Theo BĐT Bunhia ta có  (a^2+b^2+c^2) (x^2+y^2+z^2) >_ (ax + by + cz)^2 a/x = b/y + c/z

suy ra a/x=b/y=c/z

Bùi Đạt Khôi
6 tháng 8 2017 lúc 9:53

bạn có thể cm HỘ MÌNH bdt bUNHIA ĐC KO AK

Nguyễn Tiến Hiệp
Xem chi tiết
Die Devil
6 tháng 8 2016 lúc 21:45

biến đổi tương đương thì dài dòng quá
ta có: x/a = y/b =z/c =xa/a^2 =yb/b^2 =zc/c^2 = (ax+by+cz)/(a^2+b^2+c^2)
=>x/a = (ax+by+cz)/(a^2+b^2+c^2) (1)
mặt khác ta có: x/a=y/b=z/c <=> x^2/a^2 =y^2/b^2 =z^2/c^2 = (x^2+y^2+z^2 ) / (a^2+b^2+c^2)
=>x^2/a^2 = (x^2+y^2+z^2 ) / (a^2+b^2+c^2) (2)
từ (1) và (2) ta => (ax+by+cz)^2/(a^2+b^2+c^2)^2 = (x^2+y^2+z^2 ) / (a^2+b^2+c^2)
=> (x^2+y^2+z^2).(a^2+b^2+c^2)=(ax+by+cz)^2 => đpcm

Chúc bn hok tốt

Nguyễn Oanh
Xem chi tiết
cô bé nguyễn linh
Xem chi tiết
Hoàng Lê Bảo Ngọc
3 tháng 6 2016 lúc 0:09

Ta có : \(x=a^2-bc\Rightarrow ax=a^3-abc\)\(y=b^2-ac\Rightarrow by=b^3-abc\)\(z=c^2-ab\Rightarrow cz=c^3-abc\)

\(\Rightarrow ax+by+cz=a^3+b^3+c^3-3abc\)

Ta có : \(a^3+b^3+c^3-3abc=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-ac-bc\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2-bc+b^2-ac+c^2-ab\right)=\left(a+b+c\right)\left(x+y+z\right)\)

Vậy : \(\left(x+y+z\right)\left(a+b+c\right)=ax+by+cz\)(đpcm)

Bạn lưu ý đề bài ở chỗ \(y^2=b^2-ac\)bạn ghi sai nhé, phải là \(y=b^2-ac\)

Bạn nhớ ghi thêm điều kiện x,y,z khác 0 nữa nhé :))

khánh huyền
Xem chi tiết
khanhhuyen6a5
Xem chi tiết