Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Minh Nhật
Xem chi tiết
Lê Song Phương
20 tháng 8 2023 lúc 10:53

Ta có \(ab+bc+ca=3abc\)

\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\)

Đặt \(x=\dfrac{1}{a},y=\dfrac{1}{b},z=\dfrac{1}{c}\) thì ta có \(x,y,z>0;x+y+z=3\) và 

\(\sqrt{\dfrac{a}{3b^2c^2+abc}}=\sqrt{\dfrac{\dfrac{1}{x}}{3.\dfrac{1}{y^2z^2}+\dfrac{1}{xyz}}}=\sqrt{\dfrac{\dfrac{1}{x}}{\dfrac{3x+yz}{xy^2z^2}}}=\sqrt{\dfrac{y^2z^2}{3x+yz}}\) \(=\dfrac{yz}{\sqrt{3x+yz}}\) \(=\dfrac{yz}{\sqrt{x\left(x+y+z\right)+yz}}\) \(=\dfrac{yz}{\sqrt{\left(x+y\right)\left(x+z\right)}}\)

Do đó \(T=\dfrac{yz}{\sqrt{\left(x+y\right)\left(x+z\right)}}+\dfrac{zx}{\sqrt{\left(y+z\right)\left(y+x\right)}}+\dfrac{xy}{\sqrt{\left(z+x\right)\left(z+y\right)}}\)

Lại có \(\dfrac{yz}{\sqrt{\left(x+y\right)\left(x+z\right)}}\le\dfrac{yz}{2\left(x+y\right)}+\dfrac{yz}{2\left(x+z\right)}\)

Lập 2 BĐT tương tự rồi cộng theo vế, ta được \(T\le\dfrac{yz}{2\left(x+y\right)}+\dfrac{yz}{2\left(x+z\right)}+\dfrac{zx}{2\left(y+z\right)}+\dfrac{zx}{2\left(y+x\right)}\) \(+\dfrac{xy}{2\left(z+x\right)}+\dfrac{xy}{2\left(z+y\right)}\)

\(T\le\dfrac{yz+zx}{2\left(x+y\right)}+\dfrac{xy+zx}{2\left(y+z\right)}+\dfrac{xy+yz}{2\left(z+x\right)}\)

\(T\le\dfrac{x+y+z}{2}\) (do \(x+y+z=3\))

\(T\le\dfrac{3}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=1\) \(\Leftrightarrow a=b=c=1\)

Vậy \(maxT=\dfrac{3}{2}\), xảy ra khi \(a=b=c=1\)

 (Mình muốn gửi lời cảm ơn tới bạn Nguyễn Đức Trí vì ý tưởng của bài này chính là bài mình vừa hỏi lúc nãy trên diễn đàn. Cảm ơn bạn Trí rất nhiều vì đã giúp mình có được lời giải này.)

Nguyễn Đức Trí
20 tháng 8 2023 lúc 13:58

 Bạn Lê Song Phương xem lại dùm nhé, thanks!

\(...\dfrac{yz}{\sqrt[]{\left(x+y\right)\left(x+z\right)}}\le\dfrac{2yz}{x+y}+\dfrac{2yz}{x+z}\)

\(...\Rightarrow T\le2.3=6\)

\(\Rightarrow GTLN\left(T\right)=6\left(tạia=b=c=1\right)\)

Lê Song Phương
20 tháng 8 2023 lúc 16:39

 Lúc mình đọc lời giải kia của bạn thì mình thấy cũng hợp lí nhưng mà Cô-si hơi nhầm tí ở chỗ \(\dfrac{1}{z+x}+\dfrac{1}{z+y}\ge\dfrac{1}{2}.\dfrac{1}{\sqrt{\left(z+x\right)\left(z+y\right)}}\) ấy.

 

 Nên là mình cũng dựa trên ý tưởng của bạn nhưng sửa \(\dfrac{1}{2}\) thành 2 thì mới đúng được

 Không thì bạn cứ kiểm tra bằng cách thay điểm rơi \(a=b=c=1\) vào T thì nó ra \(\dfrac{3}{2}\) ngay chứ không ra 6 đâu.

Nguyễn Huệ Lam
Xem chi tiết
Thánh Ca
27 tháng 8 2017 lúc 16:21

tuổi con HN là :

50 : ( 1 + 4 ) = 10 ( tuổi )

tuổi bố HN là :

50 - 10 = 40 ( tuổi )

hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi

ta có sơ đồ : bố : |----|----|----|

                  con : |----| hiệu 30 tuổi

tuổi con khi đó là :

 30 : ( 3 - 1 ) = 15 ( tuổi )

số năm mà bố gấp 3 tuổi con là :

 15 - 10 = 5 ( năm )

       ĐS : 5 năm

mình nha

Hoàng Phúc
Xem chi tiết
Nguyễn Huệ Lam
Xem chi tiết
Lê Hải Anh
Xem chi tiết
N.T.M.D
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 5 2021 lúc 20:51

a.

\(\Leftrightarrow2a^2b^2+2b^2c^2+2c^2a^2\ge2abc\left(a+b+c\right)\)

\(\Leftrightarrow\left(a^2b^2-2a^2bc+c^2a^2\right)+\left(a^2b^2-2ab^2c+b^2c^2\right)+\left(b^2c^2-2abc^2+a^2c^2\right)\ge0\)

\(\Leftrightarrow\left(ab-ca\right)^2+\left(ab-bc\right)^2+\left(bc-ca\right)^2\ge0\) (luôn đúng)

Vậy BĐT đã cho đúng

b.

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)\ge3abc\left(a+b+c\right)\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2\ge abc\left(a+b+c\right)\) (đúng theo câu a đã chứng minh)

Đoàn Nguyên Sa
Xem chi tiết
vũ tiền châu
15 tháng 12 2017 lúc 14:44

ÁP dụng bđt svacxơ, ta có \(\frac{1}{2a+b+c}\le\frac{1}{16}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\right)\)

Tương tự như vậy 

=> A\(\le\frac{1}{16}\left[4.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\right]=\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

theo gt , ta có \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\Rightarrow A\le\frac{3}{4}\)

Dấu = xáy ra <=> a=b=c=1

Dat Dam
12 tháng 3 2018 lúc 20:53

1/16*(1/a + 1/a + 1/b + 1/c) chứ

Phan PT
Xem chi tiết
Nguyễn Việt Lâm
28 tháng 1 2021 lúc 0:21

\(P=\dfrac{a^2}{ab+\dfrac{1}{b}}+\dfrac{b^2}{bc+\dfrac{1}{c}}+\dfrac{c^2}{ca+\dfrac{1}{a}}\ge\dfrac{\left(a+b+c\right)^2}{ab+bc+ca+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}}\)

\(P\ge\dfrac{3\left(ab+bc+ca\right)}{ab+bc+ca+\dfrac{ab+bc+ca}{abc}}=\dfrac{3}{1+\dfrac{1}{abc}}=\dfrac{3abc}{1+abc}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\)

Ngô Bá Hùng
27 tháng 1 2021 lúc 22:38

Với a, b, c > 0 có:

\(P=\dfrac{a}{b+2c}+\dfrac{b}{c+2a}+\dfrac{c}{a+2b}\\ =\dfrac{a^2}{a\left(b+2c\right)}+\dfrac{b^2}{b\left(c+2a\right)}+\dfrac{c^2}{c\left(a+2b\right)}\)

\(\Rightarrow P\ge\dfrac{\left(a+b+c\right)^2}{\left(1+\alpha\right)\left(ab+bc+ca\right)}\ge\dfrac{3\left(ab+bc+ca\right)}{\left(1+\alpha\right)\left(ab+bc+ca\right)}\)

chọn \(\alpha=\dfrac{1}{abc}\Rightarrow dpcm\) 

Đoàn Nguyên Sa
Xem chi tiết