abc*bc=3abc Tìm a,b,c
Cho ba số thực dương a,b,c thỏa mãn ab+bc+ca = 3abc. Tìm giá
trị lớn nhất của biểu thức T = \(\sqrt{\dfrac{a}{3b^2c^2+abc}}+\sqrt{\dfrac{b}{3b^2c^2+abc}}+\sqrt{\dfrac{c}{3a^2b^2+abc}}\)
Ta có \(ab+bc+ca=3abc\)
\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\)
Đặt \(x=\dfrac{1}{a},y=\dfrac{1}{b},z=\dfrac{1}{c}\) thì ta có \(x,y,z>0;x+y+z=3\) và
\(\sqrt{\dfrac{a}{3b^2c^2+abc}}=\sqrt{\dfrac{\dfrac{1}{x}}{3.\dfrac{1}{y^2z^2}+\dfrac{1}{xyz}}}=\sqrt{\dfrac{\dfrac{1}{x}}{\dfrac{3x+yz}{xy^2z^2}}}=\sqrt{\dfrac{y^2z^2}{3x+yz}}\) \(=\dfrac{yz}{\sqrt{3x+yz}}\) \(=\dfrac{yz}{\sqrt{x\left(x+y+z\right)+yz}}\) \(=\dfrac{yz}{\sqrt{\left(x+y\right)\left(x+z\right)}}\)
Do đó \(T=\dfrac{yz}{\sqrt{\left(x+y\right)\left(x+z\right)}}+\dfrac{zx}{\sqrt{\left(y+z\right)\left(y+x\right)}}+\dfrac{xy}{\sqrt{\left(z+x\right)\left(z+y\right)}}\)
Lại có \(\dfrac{yz}{\sqrt{\left(x+y\right)\left(x+z\right)}}\le\dfrac{yz}{2\left(x+y\right)}+\dfrac{yz}{2\left(x+z\right)}\)
Lập 2 BĐT tương tự rồi cộng theo vế, ta được \(T\le\dfrac{yz}{2\left(x+y\right)}+\dfrac{yz}{2\left(x+z\right)}+\dfrac{zx}{2\left(y+z\right)}+\dfrac{zx}{2\left(y+x\right)}\) \(+\dfrac{xy}{2\left(z+x\right)}+\dfrac{xy}{2\left(z+y\right)}\)
\(T\le\dfrac{yz+zx}{2\left(x+y\right)}+\dfrac{xy+zx}{2\left(y+z\right)}+\dfrac{xy+yz}{2\left(z+x\right)}\)
\(T\le\dfrac{x+y+z}{2}\) (do \(x+y+z=3\))
\(T\le\dfrac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z=1\) \(\Leftrightarrow a=b=c=1\)
Vậy \(maxT=\dfrac{3}{2}\), xảy ra khi \(a=b=c=1\)
(Mình muốn gửi lời cảm ơn tới bạn Nguyễn Đức Trí vì ý tưởng của bài này chính là bài mình vừa hỏi lúc nãy trên diễn đàn. Cảm ơn bạn Trí rất nhiều vì đã giúp mình có được lời giải này.)
Bạn Lê Song Phương xem lại dùm nhé, thanks!
\(...\dfrac{yz}{\sqrt[]{\left(x+y\right)\left(x+z\right)}}\le\dfrac{2yz}{x+y}+\dfrac{2yz}{x+z}\)
\(...\Rightarrow T\le2.3=6\)
\(\Rightarrow GTLN\left(T\right)=6\left(tạia=b=c=1\right)\)
Lúc mình đọc lời giải kia của bạn thì mình thấy cũng hợp lí nhưng mà Cô-si hơi nhầm tí ở chỗ \(\dfrac{1}{z+x}+\dfrac{1}{z+y}\ge\dfrac{1}{2}.\dfrac{1}{\sqrt{\left(z+x\right)\left(z+y\right)}}\) ấy.
Nên là mình cũng dựa trên ý tưởng của bạn nhưng sửa \(\dfrac{1}{2}\) thành 2 thì mới đúng được
Không thì bạn cứ kiểm tra bằng cách thay điểm rơi \(a=b=c=1\) vào T thì nó ra \(\dfrac{3}{2}\) ngay chứ không ra 6 đâu.
Cho a, b, c > 0 thỏa mãn a+b+c=1
Tính \(P=\left(\frac{a-bc}{a+bc}+\frac{b-ac}{b+ac}+\frac{c-ab}{c+ab}\right):\frac{ab+bc+ca+3abc}{ab+bc-abc}.\)
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
a,b,c>0;ab+bc+ca=3 . Tìm GTNN của P=a^3+b^3+c^3+3abc
Cho a, b, c > 0 thỏa mãn a+b+c=1
Tính \(P=\left(\frac{a-bc}{a+bc}+\frac{b-ac}{b+ac}+\frac{c-ab}{c+ab}\right):\frac{ab+bc+ca+3abc}{ab+bc-abc}.\)
tìm gtnn A= ab^2/(a+b)+bc^2/(b+c)+ca^2/(c+a) với a,b,c>0 thỏa mãn a+b+c=3abc
Cho các số thực a,b,c.Chứng minh rằng
a,\(a^2b^2+b^2c^2+c^2a^2\ge abc\left(a+b+c\right)\))
b,\(\left(ab+bc+ca\right)^2\ge\)3abc(a+b+c)
a.
\(\Leftrightarrow2a^2b^2+2b^2c^2+2c^2a^2\ge2abc\left(a+b+c\right)\)
\(\Leftrightarrow\left(a^2b^2-2a^2bc+c^2a^2\right)+\left(a^2b^2-2ab^2c+b^2c^2\right)+\left(b^2c^2-2abc^2+a^2c^2\right)\ge0\)
\(\Leftrightarrow\left(ab-ca\right)^2+\left(ab-bc\right)^2+\left(bc-ca\right)^2\ge0\) (luôn đúng)
Vậy BĐT đã cho đúng
b.
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)\ge3abc\left(a+b+c\right)\)
\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2\ge abc\left(a+b+c\right)\) (đúng theo câu a đã chứng minh)
ab+bc+ca=3abc tìm giá trị lớn nhất 1/(2a+b+c) +1/(a+2b+c) + 1/(a+b+2c)
ÁP dụng bđt svacxơ, ta có \(\frac{1}{2a+b+c}\le\frac{1}{16}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}\right)\)
Tương tự như vậy
=> A\(\le\frac{1}{16}\left[4.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\right]=\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
theo gt , ta có \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\Rightarrow A\le\frac{3}{4}\)
Dấu = xáy ra <=> a=b=c=1
Cho a,b,c >0.Chứng minh:
\(P=\dfrac{a^2b}{ab^2+1}+\dfrac{b^2c}{bc^2+1}+\dfrac{c^2a}{ca^2+1}\ge\dfrac{3abc}{1+abc}\)
\(P=\dfrac{a^2}{ab+\dfrac{1}{b}}+\dfrac{b^2}{bc+\dfrac{1}{c}}+\dfrac{c^2}{ca+\dfrac{1}{a}}\ge\dfrac{\left(a+b+c\right)^2}{ab+bc+ca+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}}\)
\(P\ge\dfrac{3\left(ab+bc+ca\right)}{ab+bc+ca+\dfrac{ab+bc+ca}{abc}}=\dfrac{3}{1+\dfrac{1}{abc}}=\dfrac{3abc}{1+abc}\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c\)
Với a, b, c > 0 có:
\(P=\dfrac{a}{b+2c}+\dfrac{b}{c+2a}+\dfrac{c}{a+2b}\\ =\dfrac{a^2}{a\left(b+2c\right)}+\dfrac{b^2}{b\left(c+2a\right)}+\dfrac{c^2}{c\left(a+2b\right)}\)
\(\Rightarrow P\ge\dfrac{\left(a+b+c\right)^2}{\left(1+\alpha\right)\left(ab+bc+ca\right)}\ge\dfrac{3\left(ab+bc+ca\right)}{\left(1+\alpha\right)\left(ab+bc+ca\right)}\)
chọn \(\alpha=\dfrac{1}{abc}\Rightarrow dpcm\)
ab+bc+ca=3abc tìm giá trị lớn nhất của 1/(2a+b+c) + 1/(a+2b+c) + 1/(a+b+2c)