Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyenhoquocbao
Xem chi tiết
Sherlockichi Kudoyle
13 tháng 7 2016 lúc 20:46

cho mik sửa lại

\(\frac{x-3}{2}=\frac{2y+2}{3}=\frac{z-2}{4}=\frac{x-3-2y-2+z-2}{2-3+4}=\frac{43-7}{3}=\frac{36}{3}=13\)

rồi sửa x; y ; z

Sherlockichi Kudoyle
13 tháng 7 2016 lúc 20:39

áp dụng tính chất dãy tỉ số = nhau ta có

\(\frac{x}{2}=\frac{y+1}{3}=\frac{z-2}{4}\Rightarrow\frac{x}{2}=\frac{2y+2}{6}=\frac{z-2}{4}\)\(=\frac{x-2y-2+z-2}{2+6-4}=\frac{x-2y+z-2-2}{4}=\frac{39}{4}\)

\(\frac{x}{2}=\frac{39}{4}\Rightarrow x=\frac{39}{2}\)

\(\frac{y+1}{3}=\frac{39}{4}\Rightarrow y=\frac{113}{4}=28,25\)

\(\frac{z-2}{4}=\frac{39}{4}\Rightarrow z=41\)

nếu mik sai thì mấy bạn sửa giùm nhé

nguyen thi thuy duong
Xem chi tiết
Điệp viên 007
16 tháng 7 2018 lúc 14:02

\(a,\) \(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\left(1\right)\)

\(7x=5z\Rightarrow\frac{x}{5}=\frac{z}{7}\Rightarrow\frac{x}{10}=\frac{z}{14}\left(2\right)\)

Từ (1) và (2) ta có: \(\frac{x}{10}=\frac{y}{15}=\frac{z}{14}\) và \(x-y+z=32\)

Áp dụng t/c DTSBN ta có:

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{14}=\frac{x-y+z}{10-15+14}=\frac{32}{9}\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{10}=\frac{32}{9}\Rightarrow x=\frac{320}{9}\\\frac{y}{15}=\frac{32}{9}\Rightarrow y=\frac{160}{3}\\\frac{z}{14}=\frac{32}{9}\Rightarrow z=\frac{2560}{189}\end{cases}}\)

Vậy \(x=\frac{320}{9};y=\frac{160}{3};z=\frac{2560}{189}\)

các câu còn lại lm tương tự nhé

nguyen thi thuy duong
16 tháng 7 2018 lúc 14:04

uhm, tks bn

Napkin ( Fire Smoke Team...
4 tháng 3 2020 lúc 21:10

\(a,3x=2y=>\frac{x}{2}=\frac{y}{3}=>\frac{x}{10}=\frac{y}{15}\)(1)

\(7x=5z=>\frac{x}{5}=\frac{z}{7}=>\frac{x}{10}=\frac{z}{14}\)(2)

Từ 1 và 2 \(=>\frac{x}{10}=\frac{y}{15}=\frac{z}{14}\)

Áp dụng tc của dãy tỉ số bằng nhau :

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{14}=\frac{x-y+z}{10-15+14}=\frac{32}{9}\)

\(=>\hept{\begin{cases}\frac{x}{10}=\frac{32}{9}=>9x=320=>x=\frac{320}{9}\\\frac{y}{15}=\frac{32}{9}=>9y=480=>y=\frac{480}{9}\\\frac{z}{14}=\frac{32}{9}=>9z=448=>z=\frac{448}{9}\end{cases}}\)

Vậy ,,,

Khách vãng lai đã xóa
kim ngan ha
Xem chi tiết
Đặng Thị Cẩm Tú
Xem chi tiết
Trần Thị Hiền
31 tháng 1 2017 lúc 11:37

a)\(\left|x-2y\right|=5\Rightarrow\left[\begin{matrix}x-2y=5\\x-2y=-5\end{matrix}\right.\)

Từ \(2x=3y=5z\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)\(\Rightarrow\frac{x}{15}=\frac{2y}{20}=\frac{z}{6}\)

Nếu x-2y=5

Áp dụng tc dãy tỉ số bằng nhau ta có:

\(\frac{x}{15}=\frac{2y}{20}=\frac{z}{6}=\frac{x-2y}{15-20}=\frac{5}{-5}-1\)

\(\Rightarrow\left\{\begin{matrix}x=-15\\y=-10\\z=-6\end{matrix}\right.\)

Nếu x-2y=-5

Áp dụng tc dãy tỉ số bằng nhau ta có:

\(\frac{x}{15}=\frac{2y}{20}=\frac{z}{6}=\frac{x-2y}{15-20}=\frac{-5}{-5}=1\)

\(\Rightarrow\left\{\begin{matrix}x=15\\y=10\\z=6\end{matrix}\right.\)

Vậy có 2 bộ (x,y,z). Đó là (-15;-10;-6), (15;10;6)

Trần Thị Hiền
31 tháng 1 2017 lúc 12:01

b) Từ \(5x=2y\Rightarrow\frac{x}{2}=\frac{y}{5}\)\(\Rightarrow\frac{x}{6}=\frac{y}{15}\left(1\right)\)

\(2x=3z\Rightarrow\frac{x}{3}=\frac{z}{2}\)\(\Rightarrow\frac{x}{6}=\frac{z}{4}\left(2\right)\)

Từ (1),(2)\(\Rightarrow\frac{x}{6}=\frac{y}{15}=\frac{z}{4}\)

Đặt\(\)\(\frac{x}{6}=\frac{y}{15}=\frac{x}{4}=k\)

\(\Rightarrow\left\{\begin{matrix}x=6k\\y=15k\\z=4k\end{matrix}\right.\Rightarrow xy=90k^2\)

\(\Rightarrow90k^2=90\Rightarrow k^2=1\Rightarrow\left[\begin{matrix}k=1\\k=-1\end{matrix}\right.\)

Với k=1\(\Rightarrow\)\(\left\{\begin{matrix}x=6\\y=15\\z=4\end{matrix}\right.\)

Với k=-1\(\Rightarrow\left\{\begin{matrix}x=-6\\y=-15\\z=-4\end{matrix}\right.\)

Hung nigga
Xem chi tiết
Ngô Bá Hùng
7 tháng 8 2019 lúc 18:56

NHỚ tick cho mik nhá!

Hỏi đáp Toán

✿✿❑ĐạT̐®ŋɢย❐✿✿
7 tháng 8 2019 lúc 19:00

a) \(\frac{x}{5}=\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{x}{5}=\frac{2y}{6}=\frac{z}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được :

\(\frac{x}{5}=\frac{2y}{6}=\frac{z}{4}=\frac{x-2y+z}{5-6+4}=\frac{6}{3}=2\)

\(\Leftrightarrow\left\{{}\begin{matrix}\frac{x}{5}=2\\\frac{2y}{6}=2\\\frac{z}{4}=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=5.2\\2y=6.2\\z=4.2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=6\\z=8\end{matrix}\right.\)

Vậy : \(\left(x,y,z\right)=\left(10,6,8\right)\)

b) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{x^2}{4}=\frac{2y^2}{18}=\frac{z^2}{16}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được :

\(\frac{x^2}{4}=\frac{2y^2}{18}=\frac{z^2}{16}=\frac{x^2-2y^2+z^2}{4-18+16}=\frac{8}{2}=4\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2=16\\y^2=36\\z^2=64\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\pm4\\y=\pm6\\z=\pm8\end{matrix}\right.\)

Vậy : \(\left(x,y,z\right)\in\left\{\left(-4,-6,-8\right),\left(4,6,8\right)\right\}\)

ĐẶNG THỊ THỦY
7 tháng 8 2019 lúc 20:34

a) x5=y3=z4⇒x5=2y6=z4x5=y3=z4⇒x5=2y6=z4

Áp dụng tính chất dãy tỉ số bằng nhau ta được :

x5=2y6=z4=x−2y+z5−6+4=63=2x5=2y6=z4=x−2y+z5−6+4=63=2

⇔⎧⎪ ⎪ ⎪⎨⎪ ⎪ ⎪⎩x5=22y6=2z4=2⇔{x5=22y6=2z4=2 ⇔⎧⎪⎨⎪⎩x=5.22y=6.2z=4.2⇔{x=5.22y=6.2z=4.2 ⇔⎧⎪⎨⎪⎩x=10y=6z=8⇔{x=10y=6z=8

Vậy : (x,y,z)=(10,6,8)(x,y,z)=(10,6,8)

b) x2=y3=z4⇒x24=2y218=z216x2=y3=z4⇒x24=2y218=z216

Áp dụng tính chất dãy tỉ số bằng nhau ta được :

x24=2y218=z216=x2−2y2+z24−18+16=82=4x24=2y218=z216=x2−2y2+z24−18+16=82=4

⇔⎧⎪⎨⎪⎩x2=16y2=36z2=64⇔{x2=16y2=36z2=64 ⇔⎧⎪⎨⎪⎩x=±4y=±6z=±8⇔{x=±4y=±6z=±8

Vậy : (x,y,z)∈{(−4,−6,−8),(4,6,8)}

Nguyen Hai Bang
Xem chi tiết
Die Devil
5 tháng 8 2016 lúc 9:03

1. Tìm x, y, z bik 3x = 2y, 7y = 5z và x-y+z = 32
Ta có 3x=2y => x/2=y/3 <=> x/10 = y/15 (1)
7y = 5z => z/7 = y/5 <=> z/21 = y/15 (2)
Từ 1 và 2 ta suy ra x/10 = y/15 = z/21 = (x-y+z)/(10-15+21) = 32/16 = 2
Vậy x = 10*2 = 20
y = 15*2 = 30
z = 21*2 = 42

Nguyễn Hoàng Linh Chi
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 10 2020 lúc 20:53

Ta có: \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)

\(\Leftrightarrow\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}\)

Ta có: x-2y+3z=14

Áp dụng tính chất của dãy tỉ só bằng nhau, ta được:

\(\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}=\frac{x-1-2y+4+3z-9}{2-6+12}=\frac{14-6}{8}=\frac{8}{8}=1\)

Do đó:

\(\left\{{}\begin{matrix}\frac{x-1}{2}=1\\\frac{2y-4}{6}=1\\\frac{3z-9}{12}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=2\\2y-4=6\\3z-9=12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\2y=10\\3z=21\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=5\\z=7\end{matrix}\right.\)

Vậy: (x,y,z)=(3;5;7)

Bae joo-hyeon
Xem chi tiết
Nguyễn Văn Tuấn Anh
16 tháng 8 2019 lúc 16:31

Ta có: \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{4}=\frac{y}{6}\)

    \(\frac{y}{2}=\frac{z}{3}\Rightarrow\frac{y}{6}=\frac{x}{9}\)

\(\Rightarrow\frac{x}{4}=\frac{y}{6}=\frac{z}{9}\Rightarrow\frac{x}{4}=\frac{2y}{12}=\frac{3z}{27}\)

Áp dụng t/c dãy tỉ số bằng nhau ,ta được:

\(\frac{x}{4}=\frac{y}{6}=\frac{z}{9}=\frac{x}{4}=\frac{2y}{12}=\frac{3z}{27}=\frac{x-2y+3z}{4-12+27}=1\)

Do đó: x=4

            y=6

           z=9

Vậy......

Lê Tài Bảo Châu
16 tháng 8 2019 lúc 20:16

b) Vì \(\frac{x}{1}=\frac{y}{4}\Rightarrow\frac{x}{3}=\frac{y}{12}\)

        \(\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{y}{12}=\frac{z}{16}\)

\(\Rightarrow\frac{x}{3}=\frac{y}{12}=\frac{z}{16}\)

\(\Rightarrow\frac{4x}{12}=\frac{y}{12}=\frac{z}{16}\)

Áp dụng tc của dãy tỉ số bằng nhau ta có:

\(\frac{4x}{12}=\frac{y}{12}=\frac{z}{16}=\frac{4x+y-z}{12+12-16}=\frac{16}{8}=2\)

\(\Rightarrow\hept{\begin{cases}x=2.3=6\\y=2.12=24\\z=2.16=32\end{cases}}\)

Vậy 

Lê Tài Bảo Châu
16 tháng 8 2019 lúc 20:19

c) Vì \(x:y:z=3:5:\left(-2\right)\)

\(\Rightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}\)

\(\Rightarrow\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có: 

\(\frac{5x}{15}=\frac{y}{5}=\frac{3z}{-6}=\frac{5x-y+3z}{15-5-6}=\frac{124}{4}=31\)

\(\Rightarrow\hept{\begin{cases}x=31.3=93\\y=31.5=155\\z=31.\left(-2\right)=-62\end{cases}}\)

Vậy ...

Quỳnh Đinh
Xem chi tiết
Hoàng Nguyễn Phương Linh
27 tháng 10 2016 lúc 16:34

Bài 1: Tìm x, y, z

\(\frac{x}{3}=\frac{y}{4}=>\frac{x}{3\times3}=\frac{y}{4\times3}=>\frac{x}{9}=\frac{y}{12}\)

\(\frac{y}{3}=\frac{z}{5}=>\frac{y}{3.4}=\frac{z}{5.4}=>\frac{y}{12}=\frac{z}{20}\)

=> \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)

- Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\) -> \(\frac{2x}{2\times9}=\frac{3y}{3\times12}=\frac{z}{20}\) -> \(\frac{2x}{18}=\frac{3y}{36}=\frac{z}{20}\)

-> \(\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)

\(\frac{x}{9}=3\rightarrow x=27\)

\(\frac{y}{12}=3\rightarrow y=36\)

\(\frac{z}{20}=3\rightarrow z=60\)

Vậy x = 27 ; y = 36 ; z = 60

Bài 2 : Tìm x, y:

5x = 2y và x.y = 40

Vì 5x = 2y => \(\frac{x}{2}=\frac{y}{5}\)

Cách 1:

\(\frac{x}{2}=\frac{y}{5}\) và x.y = 40

Đặt \(\frac{x}{2}=\frac{y}{5}\) = k

=> x = 2.k ; y = 5.k

x.y = 40 -> 2k = 5k = 40

-> 10 . \(k^2\) = 40

-> \(k^2\) = 4 -> k = 2 hoặc k = -2

k = 4 ta có : \(\frac{x}{2}=\frac{y}{5}=2->x=4;y=10\)

k = -4 ta có : \(\frac{x}{2}=\frac{y}{5}=-2->x=-4;y=-10\)

Cách 2:

\(\frac{x}{2}=\frac{y}{5}->\frac{x.x}{2}=\frac{x.y}{5}->\frac{x^2}{2}=\frac{40}{5}=\frac{x^2}{2}=8\)

=> \(x^2\) = 8 . 2 = 16 -> x = 4 hoặc -4

x = 4 -> 4.y = 40 => y = 10

x = -4 -> (-4).y = 40 => y = -10

Vậy x = 4 hoặc -4

y = 10 hoặc -10

 

 

 

Phương Anh (NTMH)
27 tháng 10 2016 lúc 15:40

\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\left(1\right)\\\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)

Từ (1),(2) suy ra \(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{x}{9}=\frac{y}{12}=\frac{z}{15}=\frac{2x}{18}=\frac{-3y}{-36}=\frac{z}{15}=\frac{2x-3y+z}{18-\left(-36\right)+15}=\frac{6}{69}=\frac{2}{23}\)Suy ra x =\(\frac{2}{23}\cdot9=\frac{18}{23}\)

\(y=\frac{2}{23}\cdot12=\frac{24}{23}\\ z=\frac{2}{23}.15=\frac{30}{23}\)

Nguyễn Thanh Vân
27 tháng 10 2016 lúc 15:49

\(1.\)

\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\left(1\right)\)

\(\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{20}\) \(\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\) \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2x}{18}=\frac{3y}{36}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)

\(\frac{x}{9}=3\Rightarrow x=3.9=27\)

\(\frac{y}{12}=3\Rightarrow y=3.12=36\)

\(\frac{z}{20}=3\Rightarrow z=3.20=60\)

Vậy x = 27; y = 36 và z = 60