Cho x = y+1 CMR
(x+y).(x^2+y^2).(x^4+y^4).(x^8+y^8)=x^16-y^16
cho x=y+1. CMR:(x+y)(x2+y2)(x4+y4)(x8+y8)=x16+y16
Cho x,y>0,x+y=1.CM:`A=(x+1/x)^2+(y+1/y)^2>=25/2`
`A=x^2+1/x^2+2+y^2+1/y^2+2`
`=x^2+y^2+1/x^2+1/y^2+4`
`=(x^2+1/(16x^2))+(y^2+1/(16y^2))+4+15/16(1/x^2+1/y^2)`
Áp dụng BĐt cosi và `1/a^2+1/b^2>=8/(a+b)^2`
`=>A>=1/2+1/2+4+15/16(8/(x+y)^2)`
`<=>A>=5+15/2=25/2`
Dấu "=" `<=>x=y=1/2`
Không làm theo cách sau:
Áp dụng BĐT phụ \(a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Leftrightarrow\left(a-b\right)^2\ge0\)
\(A\ge\dfrac{1}{2}\left(x+y+\dfrac{1}{x}+\dfrac{1}{y}\right)^2\ge\dfrac{1}{2}\left(x+y+\dfrac{4}{x+y}\right)^2=\dfrac{1}{2}\left(1+\dfrac{4}{1}\right)^2=\dfrac{25}{2}\)
Dấu "=" \(x=y=\dfrac{1}{2}\)
Cho x=y+1. Chứng minh rằng:
a) x3-y3-3xy=1
b) (x+y)(x2+y2)(x4+y4)(x8+y8)=x16-y16
Rút gọn biểu thức với x - y = 1
\(\left(x+y\right)\left(x^2+y^2\right)\left(x^4+y^4\right)\left(x^8+y^8\right)\left(x^{16}+y^{16}\right)\)
Ta có \(x-y=1\)
\(=>x+y=\left(x+y\right).\left(x-y\right)\)
\(A=\left(x+y\right).\left(x-y\right).\left(x^2+y^2\right).\left(x^4+y^4\right)\)
\(A=\left(x^2-y^2\right).\left(x^2+y^2\right).\left(x^4+y^4\right)\)
\(A=\left(x^4-y^4\right).\left(x^4+y^4\right)\)
\(A=x^8-y^8\)
= \(-\left[\left(x-y\right)\left(x^2-y^2\right)\left(x^4-y^4\right)\left(x^8-y^8\right)\left(x^{16}-y^{16}\right)\right]\)
= \(-\left[\left(x-y\right)\left(x-y\right)^2\left(x-y\right)^4\left(x-y\right)^8\left(x-y\right)^{16}\right]\)
= \(-\left(1\cdot1^2\cdot1^4\cdot1^8\cdot1^{16}\right)\)
= -1
Bài 8: Phân tích đa thức sau thành nhân tử
1)(x+y)^2-9x^2
2)(3x-1)^2-16
3)4x^2-(x^2+1)^2
4)(2x+1)^2 -(x-1)^2
5)(x+1)^4 - (x-1)^4
6)25(x-y)^2 - 16(x+y)^2
7) (x^2+xy)^2 - (y^2 + xy)^2
8)(x^2 +4y^2-20)^2 -16(xy-4)^2
1: =(x+y-3x)(x+y+3x)
=(-2x+y)(4x+y)
2: =(3x-1-4)(3x-1+4)
=(3x+3)(3x-5)
=3(x+1)(3x-5)
3: =(2x)^2-(x^2+1)^2
=-[(x^2+1)^2-(2x)^2]
=-(x^2+1-2x)(x^2+1+2x)
=-(x-1)^2(x+1)^2
4: =(2x+1+x-1)(2x+1-x+1)
=3x(x+2)
5: =[(x+1)^2-(x-1)^2][(x+1)^2+(x-1)^2]
=(2x^2+2)*4x
=8x(x^2+1)
6: =(5x-5y)^2-(4x+4y)^2
=(5x-5y-4x-4y)(5x-5y+4x+4y)
=(x-9y)(9x-y)
7: =(x^2+xy+y^2+xy)(x^2+xy-y^2-xy)
=(x^2+2xy+y^2)(x^2-y^2)
=(x+y)^3*(x-y)
8: =(x^2+4y^2-20-4xy+16)(x^2+4y^2-20+4xy-16)
=[(x-2y)^2-4][(x+2y)^2-36]
=(x-2y-2)(x-2y+2)(x+2y-6)(x+2y+6)
Cho x=y+1. Chứng minh rằng:
a)\(x^3-y^3-3xy=1\)
b)\(\left(x+y\right)\left(x^2+y^2\right)\left(x^4+y^4\right)\left(x^8+y^8\right)=x^{16}-y^{16}\)
a. Do \(x=y-1\Rightarrow x-y=1\)
Ta có:
\(A=x^3-y^3-3xy=\left(x-y\right)^3+3xy\left(x-y\right)-3xy=1^3+3xy.1-3xy=1\left(đpcm\right)\)
b. \(B=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\left(x^4+y^4\right)\left(x^8+y^8\right)\)
(Do \(x-y=1\))
(Bạn áp dụng hằng đẳng thức \(x^2-y^2=\left(x-y\right)\left(x+y\right)\)vào bài toán)
Kết quả, \(B=x^{16}-y^{16}\left(đpcm\right)\)
a)\(x=y+1\Rightarrow x-y=1\Rightarrow\left(x-y\right)^3=1\)
Hay x3- 3xy(x-y) - y3=1 => x3- y3 -3xy =1
b) 1.(x+y)(x2+y2)(x4+y4)(x8+y8) = (x-y)(x+y)......................=(x2-y2)(x2+y2)..........=(x4-y4)(x4+y4)......=(x8-y8)(x8+y8) =x16-y16
1,a) cho x^2+y^2=20 và xy=8. Tính giá trị cua (x+y)^2
b)cho x+y=8 và xy=15. Tinh x^2+y^2
2, Rút gọn biểu thức:
M=(2^2+1).(2^4+1).(2^8+1).(2^16+1)
N=16.(7^2+1).(7^4+1).(7^8+1).(7^16+1)
Bài 1 :
a ) Ta có :
\(\left(x+y\right)^2=x^2+y^2+2xy=20+16=36\)
b ) Ta có :
\(x^2+y^2=\left(x+y\right)^2-2xy=64-30=34\)
Thực hiện phép tính:
a/ 1/(1-x)+1/(1+x)+1/(1+x^2)+4/(1+x^4)+8/(1+x^8)+16/(1+x^16)
b/chứng minh nếu 1/x+1/y+1/z=2 và x+y+z=xưa thi 1/x^2+1/y^2+1/z^2
8. Cho biết x và y là hai đại lượng tỉ lệ nghịch với nhau. Khi x= 1/2 và y = 8. Khi đó hệ số tỉ lệ a và công thức biểu diễn y theo x là:
A. a= -4; y = -4x B. a= 4; y = 4x
C. a= -16; y = -16x D. a= 16; y = 16x
9. Cho x và y là hai đại lượng tỉ lệ nghịch và hai cặp giá trị tương ứng của chúng được cho trong bảng:
x | -2 | |
y | 10 | -4 |
Giá trị ở ô trống trong bảng là:
A. -5 B. 0,8
C. -0,8 D.Một kết quả khác
10. Cho x và y là hai đại lượng tỉ lệ thuận và hai cặp giá trị tương ứng của chúng được cho trong bảng:
x | 4 | |
y | -6 | 12 |
Giá trị ở ô trống trong bảng là:
A. -8 B. 2
C. -2 D. 8
11. Cho biết x tỉ lệ nghịch với y theo hệ số tỉ lệ -3 . Cho bảng giá trị sau:
x | x1=-4 | x2=? | x3=9 |
y | y1=? | y2=3/2 | y3=? |
A.y1=4/3; x2=-2 ; y3=-3 B.y1=4/3 ; x2=-2 ; y3=-1/3
C.y1= 3/4; x2= -2; y3 =-1/3 D. y1=4/3 ; x2=2 ; y3 =-1/3
12. Cho biết x và là hai đại lượng tỉ lệ nghịch. Khi x = 6 thì y = 9. Khi x = 3 thì y bằng:
A. 9/2 B.18
C. -18 D. 9/2
13. Cho hàm số y = f(x) = 4x – 10, f(2) bằng:
A. 2. B. -2.
C. 18. D. -18.
14. Cho y =f(x) = 2x^2 -3. Kết quả nào sau đây là sai?
A. f(0) = -3 B. f(2) =1
C. f(1) = -1 D. f(-1) =-1
15. Cho hàm số y = f(x) = 1- 4x. Khẳng định nào sau đây là đúng?
A.f(-1) = -5 B. f(0,5) = 1
C.f(-2) = 9 D.f(0) = 0
16. Một hàm số được cho bằng công thức y=f(x)=-x^2+2. Tính f(-1/2) ; f(0)
A. f(-1/2)=0; f(0)=7/4 B.f(-1/2)=7/4; f(0)=2
C. f(-1/2) =-7/4; f(0)=2 D.f(-1/2)=7/4; f(0)=-2
17. Chia 117 thành ba phần tỉ lệ thuận với 3 ; 4; 6. Khi đó phần lớn nhất là số: A. 36 B. 54
C.27 D. 45