Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thanh Huyền
Xem chi tiết
Nguyễn Dương
Xem chi tiết
trần thị kim thư
Xem chi tiết
Minh Nhân
10 tháng 7 2021 lúc 17:27

\(5\sqrt{2}+\sqrt{75}=5\sqrt{2}+5\sqrt{3}\)

\(5\sqrt{3}+\sqrt{50}=5\sqrt{3}+5\sqrt{2}\)

\(\Rightarrow5\sqrt{2}+\sqrt{75}=5\sqrt{3}+\sqrt{50}\)

 

Nguyễn Thị Quỳnh Như
Xem chi tiết
Huỳnh Hải Triều
17 tháng 6 2017 lúc 19:04

1/ bình phương hai vế được (căn11)^2+(căn5)^2=11+5   4^2=16 vậy căn 11+căn 5=4

2/ tương tự (3 căn3 )^2=27   (căn19)^2-(căn 2)^2=19-2=17  vậy 3 căn 3 >căn 19-căn2

Hoàng Kiều Quỳnh Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 2 2022 lúc 13:21

b: \(\sqrt{\dfrac{3}{2}}>\sqrt{\dfrac{2}{2}}=1\)

a: \(\left(2\sqrt{5}-3\sqrt{2}\right)^2=38-12\sqrt{10}=1+37-12\sqrt{10}\)

\(1^2=1\)

mà \(37-12\sqrt{10}< 0\)

nên \(2\sqrt{5}-3\sqrt{2}< 1\)

Đỗ Vy
Xem chi tiết
Akai Haruma
12 tháng 9 2021 lúc 3:52

Lời giải:

$\sqrt{3}+5> \sqrt{1}+5=6$

$\sqrt{2}+\sqrt{11}< \sqrt{4}+\sqrt{16}=6$

$\Rightarrow \sqrt{3}+5> \sqrt{2}+\sqrt{11}$

Kim Miso
Xem chi tiết
Huỳnh Quang Sang
17 tháng 2 2020 lúc 9:13

a) Ta có : \(x=\sqrt{40+2}=\sqrt{42}< \sqrt{49}=7\)                    (1)

\(y=\sqrt{40}+\sqrt{2}>\sqrt{36}+\sqrt{1}=6+1=7\)             (2)

Từ (1) và (2) => x = y

b) Ta có : \(x=\sqrt{625}-\frac{1}{\sqrt{5}}=25-\frac{1}{\sqrt{5}}\)        (1)

\(y=\sqrt{576}-\frac{1}{\sqrt{6}}+1=24-\frac{1}{\sqrt{6}}+1=25-\frac{1}{\sqrt{6}}\) (2)

Vì \(\sqrt{5}< \sqrt{6}\)nên \(\frac{1}{\sqrt{5}}>\frac{1}{\sqrt{6}}\)(3)

(1),(2),(3) => \(x>y\)

Khách vãng lai đã xóa
Kim Miso
17 tháng 2 2020 lúc 9:48

Mà Mun Già ơi, chỗ mà câu a đó, KL hình như sai rồi, từ (1) và (2) suy ra x<y chứ sao = nhau đc

Khách vãng lai đã xóa
Huỳnh Quang Sang
17 tháng 2 2020 lúc 9:51

Kim Miso nhầm,bạn sửa  câu a,b đều là " < "nhé

Khách vãng lai đã xóa
Đào Thị Vương Thư
Xem chi tiết
Nguyễn Hoàng Minh
24 tháng 11 2021 lúc 9:43

\(y=f\left(x\right)=\left(\sqrt{3}+1\right)x-5\)

Vì \(\sqrt{3}+1>0\) nên hs đồng biến trên R

Mà \(2+\sqrt{3}< 3+\sqrt{3}\)

Vậy \(f\left(2+\sqrt{3}\right)< f\left(3+\sqrt{3}\right)\)

Đoàn Ngọc Quang Khải
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 7 2021 lúc 21:37

\(\left(5-2\sqrt{7}\right)^2=53-20\sqrt{7}=19+34-20\sqrt{7}\)

\(\left(3-\sqrt{10}\right)^2=19-6\sqrt{10}\)

mà \(34-20\sqrt{7}>-6\sqrt{10}\)

nên \(5-2\sqrt{7}>3-\sqrt{10}\)