Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Đức Thi
Xem chi tiết
SKT_ Lạnh _ Lùng
23 tháng 4 2016 lúc 19:23

Cho S=3/1x4+3/4x7+3/7x10+...+3/40x43+3/43x46. Hãy chứng tỏ S<1

ĐPM : S < 1

Thắng Nguyễn
23 tháng 4 2016 lúc 19:30

S=3/1x4+3/4x7+3/7x10+...+3/40x43+3/43x46

\(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{43}-\frac{1}{46}\)

\(S=1-\frac{1}{46}\)

=>S<1

Kalluto Zoldyck
23 tháng 4 2016 lúc 19:37

S = 3/1.4 + 3/4.7 +....+ 3/43.46

S = 1 - 1/4 + 1/4 - 1/7 +.....+ 1/43 - 1/46

S = 1 - 1/46

S = 45/46 < 1

=> S < 1 (đpcm)

Linh Phùng
Xem chi tiết
Xyz OLM
6 tháng 6 2021 lúc 11:20

\(S=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{40.43}+\frac{3}{43.46}\)

\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{40}-\frac{1}{43}+\frac{1}{43}-\frac{1}{46}=1-\frac{1}{46}=\frac{45}{46}\)

Khách vãng lai đã xóa
Quỳnh Anh
6 tháng 6 2021 lúc 12:07

Trả lời:

\(S=\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{40\cdot43}+\frac{3}{43\cdot46}\)

\(=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{40}-\frac{1}{43}+\frac{1}{43}-\frac{1}{46}\)

\(=\frac{1}{1}-\frac{1}{46}\)

\(=\frac{46}{46}-\frac{1}{46}\)

\(=\frac{45}{46}\)

Khách vãng lai đã xóa
tran khoi my
Xem chi tiết
Nguyễn Thị Khánh Linh
Xem chi tiết
 Mashiro Shiina
27 tháng 6 2017 lúc 8:23

\(A=\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+.....+\dfrac{3}{40.43}\)

\(A=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+.....+\dfrac{1}{40}-\dfrac{1}{43}\)

\(A=1-\dfrac{1}{43}\)

\(A< 1\left(đpcm\right)\)

Cold Wind
27 tháng 6 2017 lúc 8:27

\(A=3\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{40}-\dfrac{1}{43}\right)\)

\(=3\left(1-\dfrac{1}{43}\right)=\dfrac{126}{43}>1\)

... sai đâu không nhỉ??

Phan Thị Thảo Vy
Xem chi tiết
Thắng Nguyễn
30 tháng 4 2016 lúc 14:42

\(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{43}-\frac{1}{46}\)

\(S=1-\frac{1}{46}<1\)

=>chứng minh bị sai hoặc đề sai

Nguyễn Hưng Phát
30 tháng 4 2016 lúc 14:42

S=\(\frac{3}{1.4}+\frac{3}{4.7}+...........+\frac{3}{43.46}\)

=\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...........+\frac{1}{43}-\frac{1}{46}\)

=\(1-\frac{1}{46}<1\)

\(\Rightarrow S<1\)

Edogawa Conan
30 tháng 4 2016 lúc 14:48

S = 3/1.4 + 3/4.7 + ... + 3/43.46

= 3 - 3/4 + 3/4 - 3/7 + ... + 3/43 - 3/46

= 135/46 > 1.

=> S > 1. 

=> Điều cần chứng minh.

Nguyễn Khoa Nguyên
Xem chi tiết
Mạnh Lê
3 tháng 8 2017 lúc 6:07

\(A=\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{40.43}+\frac{3}{43.46}\)

\(\Leftrightarrow A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{40}-\frac{1}{43}+\frac{1}{43}-\frac{1}{46}\)

\(\Leftrightarrow A=1-\frac{1}{46}\)

\(\Leftrightarrow A=\frac{45}{46}\)

Nguyễn Khoa Nguyên
3 tháng 8 2017 lúc 5:56

Các bạn ơi. Chỗ cuối ko có số 4 đâu nha. Mình viết lộn

Đặng Hoàng Thịnh
26 tháng 6 2020 lúc 15:31

A = \(\frac{3}{1.4}\)\(+\)\(\frac{3}{4.7}\)\(+\)\(...\)\(+\)\(\frac{3}{43.46}\)

 = 1 - \(\frac{1}{4}\)\(\frac{1}{4}\) - \(\frac{1}{7}\)+ ...+\(\frac{1}{43}\)\(\frac{1}{46}\)

= 1 - \(\frac{1}{46}\)

\(\frac{45}{46}\)

Khách vãng lai đã xóa
Nguyễn Minh Hiếu
Xem chi tiết
Nguyễn Huy Hoàng
21 tháng 1 2020 lúc 8:33

Ta có:

S=\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)

S=\(1-\frac{1}{n+3}\)

=>S<1

Vậy S<1

\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)

Khách vãng lai đã xóa
Nguyễn Huy Hoàng
21 tháng 1 2020 lúc 8:34

Sory mình bấm bị lỗi

Khách vãng lai đã xóa
Fudo
21 tháng 1 2020 lúc 8:53

                                                                  Bài giải

\(S=\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{n\left(n+3\right)}\)

\(S=3\left(\frac{1}{1\cdot4}+\frac{1}{4\cdot7}+\frac{1}{7\cdot10}+...+\frac{1}{n\left(n+3\right)}\right)\)

\(S=3\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{n}-\frac{1}{n+3}\right)\)

\(S=3\left(1-\frac{1}{n+3}\right)\)

\(S=3\left(\frac{n+3}{n+3}-\frac{1}{n+3}\right)=3\cdot\frac{n+2}{n+3}=\frac{3n+6}{n+3}>1\)

Đề sai à bạn ?

Khách vãng lai đã xóa
Phạm Đỗ Thái An
Xem chi tiết
休 宁 凯
14 tháng 8 2018 lúc 15:24

S=1/1-1/4+1/4+1/7-1/7+1/10+...+1/100-1/103

S=1/1-1/103

S=102/103

Vì 102/103<1 nên S<1

Umi
14 tháng 8 2018 lúc 15:25

\(S=\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{100\cdot103}\)

\(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}\)

\(S=1-\frac{1}{103}\)

\(S=\frac{102}{103}< 1\)

võ minh anh
14 tháng 8 2018 lúc 15:30

\(\frac{3}{1x4}+\frac{3}{4x7}+\frac{3}{7x10}+.......+\frac{3}{100x103}\)

\(=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}....+\frac{1}{100}-\frac{1}{103}\)

\(=\frac{1}{1}-\frac{1}{103}\)

=\(\frac{102}{103}\)

nguyễn Hoành Minh Hiếu
Xem chi tiết