Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Dương Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 12 2022 lúc 12:53

a: Ta có; ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC

b: Xét ΔHDB vuông tại D và ΔHEC vuông tại E có

HB=HC

góc B=góc C

Do đó: ΔHBD=ΔHCE

=>HD=HE

Dat Do
30 tháng 12 2022 lúc 14:20

a: Ta có; ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC

b: Xét ΔHDB vuông tại D và ΔHEC vuông tại E có

HB=HC

góc B=góc C

Do đó: ΔHBD=ΔHCE

=>HD=HE

ebedangiu
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 12 2022 lúc 0:02

a: ΔABC cân tại A

mà AH là phân giác

nên H là trung điểm của BC

=>HB=HC

b: Xét ΔHDB vuông tại D và ΔHEC vuông tại E có

HB=HC

góc B=góc C

Do đó: ΔHDB=ΔHEC

La Na Kha
Xem chi tiết
La Na Kha
13 tháng 4 2018 lúc 21:44

ai trl trc thì mk cho hen!!!

Hùng Bùi Huy
13 tháng 4 2018 lúc 22:20

a, Xét hai tam giác ABH và tam giác ADH có

BH=HD(giả thiết)

góc BHA=góc DHA(=90 độ)

AH chung

Suy ra ABH=ADH(dpcm)

b,c,d dài qúa mik ko ghi nổi bạn thông cảm nhé^^

Nguyễn Tuấn Minh
Xem chi tiết
Nguyễn Phương Thảo
Xem chi tiết
Cấn Anh Khoa
2 tháng 1 2022 lúc 23:08

a) Xét tam giác AHB và tam giác AHE có

  BH=HE

  AH chung

  góc AHE= góc AHB= 90 độ ( AH vuông góc với BC)

  => tam giác AHB= tam giác AHE (c.g.c)

  =>HE=HB

b) Xét tam giác AHB và tam giác DHE có

   góc DHE = góc AHB ( đối  đỉnh)

   HE=HB (cmt)

   AH=HD

 => tam giác AHB=tam giác DHE (c.g.c)

 => DE= AB ( 2 cạnh tương ứng)

=> tam giác DHE= tam giác AHE =tam giác AHB

=> AE=DE(2 cạnh tương ứng)

c) Xét tam giác AHC và tam giác DHC có

  HC chung

  góc AHE=góc DHE=90 độ

  AH=HD

 => tam giác AHC= tam giác DHC( cạnh huyền-góc nhọn)

=>AC=DC (2 cạnh tương ứng)

Xét tam giác ACE và tam giác DCE có

  AE= DE (cmt)

  AC= DC(cmt)

  CE chung

 => tam giác ACE= tam giác DCE(c.c.c)

 => góc EAC= góc EDC (2 góc tương ứng)

  

Khách vãng lai đã xóa
Cấn Anh Khoa
2 tháng 1 2022 lúc 23:16

d)Ta có: C,E,B thẳng hàng

=> góc CEA+ góc AEB= 180 độ

Mà góc CEN và góc AEB là 2 góc đối đỉnh

=>góc AEC+ góc CEN= 180 độ

 => A,E,N thẳng hàng

Khách vãng lai đã xóa
Liễu Lê thị
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 1 2022 lúc 17:16

a: Xét ΔAHB vuông tại H và ΔAHE vuông tại H có

AH chung

HB=HE

Do đó: ΔAHB=ΔAHE

b: Xét tứ giác ABDE có

H là trung điểm của AD

H là trung điểm của BE

Do đó: ABDE là hình bình hành

Suy ra: DE//AB

c: Xét ΔEAD có 

EH là đường cao

EH là đường trung tuyến

Do đó: ΔEAD cân tại E

Xét ΔCAD có 

CH là đường cao

CH là đường trung tuyến

DO đó: ΔCAD cân tại C

Xét ΔEAC và ΔEDC có

EA=ED

EC chung

AC=DC
Do đó: ΔEAC=ΔEDC

Suy ra: \(\widehat{EAC}=\widehat{EDC}\)

Lê Phương Mai
7 tháng 1 2022 lúc 17:24

GT,KL tự viết (hình cũng tự vẽ)

a, Xét △AHB và △AHE có :

AH : chung

\(\widehat{AHB}=\widehat{AHE}(=90^o)\)

HB = HE (GT)

=>  △AHB = △AHE (c.g.c)

b, Xét  △AHB và △DHE có :

AH = DH(GT)

\(\widehat{AHB}=\widehat{DHE}(=90^o)\)

BH = EH (GT)

=> △AHB =  △DHE (c.g.c)

=> \(\widehat{HAB}=\widehat{HDE}\) (2 góc tương ứng)

Mà 2 góc này ở vị trí so le trong

=> DE // AB

c, Xét △AHC và △DHC có :

HC : chung

\(\widehat{AHC}=\widehat{DHC}(=90^o)\)

AH = DH (GT)
=> △AHC = △DHC (c.g.c)

=> AC = DC (2 cạnh tương ứng)

 \(\widehat{ACH}=\widehat{DCH}\) (2 góc tương ứng)

Xét △EAC và △EDC có :

EC : chung

\(\widehat{ECA}=\widehat{ECD}(cmt)\)

AC = DC (cmt)

=> △EAC = △EDC (c.g.c)

=> \(\widehat{EAC}=\widehat{EDC}\) (2 góc tương ứng)

d, Vì MN // AD => \(\dfrac{ME}{DE}=\dfrac{MN}{AD}\)

Xét △MEN và △DEA có :

\(\dfrac{ME}{DE}=\dfrac{MN}{AD} (cmt)\)

\(\widehat{EMN}=\widehat{EDA}( so le)\)

=> △MEN = △DEA  (c.g.c)

=> \(\widehat{MEN}=\widehat{DEA}\) (2 góc tương ứng)

Mà 2 góc ở vị trí đối đỉnh với nhau 

=> A , E , N thẳng hàng

LinhH
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 10 2023 lúc 19:29

a: Xét ΔAHB vuông tại H và ΔAHE vuông tại H có

AH chung

HB=HE

Do đó: ΔAHB=ΔAHE

b: Xét tứ giác ABDE có

H là trung điểm chung của AD và BE

=>ABDE là hình bình hành

=>DE//AB

c: Xét ΔCAD có

CH vừa là đường cao, vừa là đường trung tuyến

Do đó: ΔCAD cân tại C

=>CA=CD

Xét ΔEAD có

EH là đường cao, là đường trung tuyến

Do đó: ΔEAD cân tại E

=>EA=ED

Xét ΔCAE và ΔCDE có

CA=CD

AE=DE

CE chung

Do đó; ΔCAE=ΔCDE

=>\(\widehat{EAC}=\widehat{EDC}\)

d: Xét ΔNEA và ΔMED có

\(\widehat{NEA}=\widehat{MED}\)

EA=ED

\(\widehat{NAE}=\widehat{MDE}\)

Do đó: ΔNEA=ΔMED

=>AN=MD

CN+NA=CA

CM+MD=CD

mà CA=CD và AN=MD

nên CN=CM

Xét ΔCAD có CN/NA=CM/MD

nên NM//AD

=>NM\(\perp\)BC

e: Xét tứ giác AIDK có

AI//DK

AI=DK

Do đó: AIDK là hình bình hành

=>AD cắt IK tại trung điểm của mỗi đường

mà H là trung điểm của AD

nên H là trung điểm của KI

=>K,H,I thẳng hàng

Nguyễn Tường Lân
Xem chi tiết
Đức Huy ABC
4 tháng 1 2017 lúc 18:13

d) Vì tam giác DHB=tam giác EHC(cmb)=>HD=HE(2 cạnh tương ứng)

Mà H thuộc EF và HD=HF(theo đề bài)

=>HE=HD=HF=DF/2

Tam giác DEF có đường trung tuyến EH bằng 1/2 đáy DF tương ứng=>Tam giác DEF vuông tại E.

Nguyên Ngọc Khoa
Xem chi tiết
Nguyễn Khánh Đông
12 tháng 3 2022 lúc 16:01

56

Akai Haruma
12 tháng 3 2022 lúc 16:08

Lời giải:
a. Xét tam giác $ABH$ và $ACH$ có:

$AB=AC$ (do $ABC$ là tg cân) 

$AH$ chung 

$\widehat{AHB}=\widehat{AHC}=90^0$

$\Rightarrow \triangle AHB=\triangle AHC$ (ch-cgv) 

$\Rightarrow HB=HC$.

b. Xét tam giác $AHD$ và $AHE$ có:

$AH$ chung 

$\widehat{A_1}=\widehat{A_2}$ (do 2 tam giác bằng nhau phần a) 

$\widehat{ADH}=\widehat{AEH}=90^0$

$\Rightarrow \triangle AHD=\triangle AHE$ (ch-gn) 

$\Rightarrow \widehat{AHD}=\widehat{AHE}$ 

$\Rightarrow HA$ là tia phân giác góc $\widehat{DHE}$

c.

Từ tam giác bằng nhau phần b thì suy ra $AD=AE$

$\Rightarrow ADE$ là tam giác cân tại $A$

$\Rightarrow \widehat{AED}=\frac{1}{2}(180^0-\widehat{A})(1)$

Tam giác $ABC$ cân tại $A$

$\Rightarrow \widehat{ACB}=\frac{1}{2}(180^0-\widehat{A})(2)$

Từ $(1); (2)\Rightarrow \widehat{AED}=\widehat{ACB}$
Hai góc này ở vị trí đồng vị nên $DE\parallel BC$

 

Khuất Thu Hà
12 tháng 3 2022 lúc 16:08

56 nhé

Khách vãng lai đã xóa