. Cho tam giác ABC cân tại A. Kẻ AH BC (HÎBC).a) Chứng minh HB = HC. b) Kẻ HD AB (D Î AB), kẻ HE AC (E Î AC). Chứng minh rằng: HD = HE và DE // BC. c) Trên tia đối của tia HD lấy điểm F sao cho HF = HD. Chứng minh tam giác EDF vuông.
Câu 4.(3 điểm) (VD) Cho tam giác cân ABC có AB = AC = 5 cm ; BC = 8cm. Kẻ AH vuông góc với BC (H Î BC).
a, Chứng minh HB = HC và
b, Kẻ HD ^ AB (D Î AB) Kẻ HE ^ AC (E Î AC)
Chứng minh DHDE là tam giác cân.
Ai giúp mình với mình cần gấp!
a: Ta có; ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
b: Xét ΔHDB vuông tại D và ΔHEC vuông tại E có
HB=HC
góc B=góc C
Do đó: ΔHBD=ΔHCE
=>HD=HE
a: Ta có; ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
b: Xét ΔHDB vuông tại D và ΔHEC vuông tại E có
HB=HC
góc B=góc C
Do đó: ΔHBD=ΔHCE
=>HD=HE
Cho tam giác ABC có AB = AC = 5 cm ; BC = 8cm. Kẻ AH là đường phân giác của góc A, (H Î BC).
a, Chứng minh HB = HC
b, Kẻ HD ^ AB (D Î AB) Kẻ HE ^ AC (E Î AC). Chứng minh DHDB = DHEC .
a: ΔABC cân tại A
mà AH là phân giác
nên H là trung điểm của BC
=>HB=HC
b: Xét ΔHDB vuông tại D và ΔHEC vuông tại E có
HB=HC
góc B=góc C
Do đó: ΔHDB=ΔHEC
Cho tam giác ABC vuông tại A (AB<AC). Đường cao AH; trên tia HC lấy D sao cho HB=HD.
a) Chứng minh tam giác ABH= tam giác ADH
b) Trên tia đối của tia HA lấy E sao cho HA=HE. Chứng minh tam giác DEA cân
c) Chứng minh BC-BD>AC-AB.
d) Kẻ CK vuông với AD tại K. Chứng minh AH; BE; CK đồng quy
a, Xét hai tam giác ABH và tam giác ADH có
BH=HD(giả thiết)
góc BHA=góc DHA(=90 độ)
AH chung
Suy ra ABH=ADH(dpcm)
b,c,d dài qúa mik ko ghi nổi bạn thông cảm nhé^^
Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC tại H, trên tia đối của tia HA lấy điêm D sao cho HD= HA. Trên tia đối của tia CB lấy điểm E sao cho CE=CB. a) Chứng minh: Tam giác ACD cân b) Chứng minh: Tam giác ACE=Tam giác DCE c) Đường thẳng AC cắt DE tại K. Chứng minh: AB+BC> 2DK Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC tại H, trên tia đối của tia HA lấy điêm D sao cho HD= HA. Trên tia đối của tia CB lấy điểm E sao cho CE=CB.
a) Chứng minh: Tam giác ACD cân
b) Chứng minh: Tam giác ACE=Tam giác DCE
c) Đường thẳng AC cắt DE tại K. Chứng minh: AB+BC> 2DK
Cho tam giác ABC có ba góc nhọn ( AB < AC ) . Kẻ AH vuông góc với BC tại H. Trên đoạn thẳng HC lấy điểm E sao cho HE = HB
a) Chứng minh tam giác AHB = tam giác AHE
b) Trên tia đối tia HA lấy điểm D sao cho HD = HA . Chứng minh DE P AB
c) Chứng minh EAC = EDC
d) Tia DE cắt AC tại M . Từ M kẻ đường thẳng song song với AD cắt DC tại N . Chứng minh A,E,N thẳng hàng
a) Xét tam giác AHB và tam giác AHE có
BH=HE
AH chung
góc AHE= góc AHB= 90 độ ( AH vuông góc với BC)
=> tam giác AHB= tam giác AHE (c.g.c)
=>HE=HB
b) Xét tam giác AHB và tam giác DHE có
góc DHE = góc AHB ( đối đỉnh)
HE=HB (cmt)
AH=HD
=> tam giác AHB=tam giác DHE (c.g.c)
=> DE= AB ( 2 cạnh tương ứng)
=> tam giác DHE= tam giác AHE =tam giác AHB
=> AE=DE(2 cạnh tương ứng)
c) Xét tam giác AHC và tam giác DHC có
HC chung
góc AHE=góc DHE=90 độ
AH=HD
=> tam giác AHC= tam giác DHC( cạnh huyền-góc nhọn)
=>AC=DC (2 cạnh tương ứng)
Xét tam giác ACE và tam giác DCE có
AE= DE (cmt)
AC= DC(cmt)
CE chung
=> tam giác ACE= tam giác DCE(c.c.c)
=> góc EAC= góc EDC (2 góc tương ứng)
d)Ta có: C,E,B thẳng hàng
=> góc CEA+ góc AEB= 180 độ
Mà góc CEN và góc AEB là 2 góc đối đỉnh
=>góc AEC+ góc CEN= 180 độ
=> A,E,N thẳng hàng
Cho tam giác ABC có ba góc nhọn (AB < AC). Kẻ AH vuông góc với BC tại H. Trên đoạn
thằng HC lấy điểm E sao cho HE = HB.
a) Chứng minh tam giác AHB = tam giác AHE
b) Trên tia đối tia HA lấy điểm D sao cho HD = HA . Chứng minh DE // AB.
c) Chứng minh góc EAC = góc EDC
d) Tia DE cắt AC tại M . Từ M kẻ đường thẳng song song với AD cắt DC tại N . Chứng
minh: A, E, N thằng hàng.
a: Xét ΔAHB vuông tại H và ΔAHE vuông tại H có
AH chung
HB=HE
Do đó: ΔAHB=ΔAHE
b: Xét tứ giác ABDE có
H là trung điểm của AD
H là trung điểm của BE
Do đó: ABDE là hình bình hành
Suy ra: DE//AB
c: Xét ΔEAD có
EH là đường cao
EH là đường trung tuyến
Do đó: ΔEAD cân tại E
Xét ΔCAD có
CH là đường cao
CH là đường trung tuyến
DO đó: ΔCAD cân tại C
Xét ΔEAC và ΔEDC có
EA=ED
EC chung
AC=DC
Do đó: ΔEAC=ΔEDC
Suy ra: \(\widehat{EAC}=\widehat{EDC}\)
GT,KL tự viết (hình cũng tự vẽ)
a, Xét △AHB và △AHE có :
AH : chung
\(\widehat{AHB}=\widehat{AHE}(=90^o)\)
HB = HE (GT)
=> △AHB = △AHE (c.g.c)
b, Xét △AHB và △DHE có :
AH = DH(GT)
\(\widehat{AHB}=\widehat{DHE}(=90^o)\)
BH = EH (GT)
=> △AHB = △DHE (c.g.c)
=> \(\widehat{HAB}=\widehat{HDE}\) (2 góc tương ứng)
Mà 2 góc này ở vị trí so le trong
=> DE // AB
c, Xét △AHC và △DHC có :
HC : chung
\(\widehat{AHC}=\widehat{DHC}(=90^o)\)
AH = DH (GT)
=> △AHC = △DHC (c.g.c)
=> AC = DC (2 cạnh tương ứng)
\(\widehat{ACH}=\widehat{DCH}\) (2 góc tương ứng)
Xét △EAC và △EDC có :
EC : chung
\(\widehat{ECA}=\widehat{ECD}(cmt)\)
AC = DC (cmt)
=> △EAC = △EDC (c.g.c)
=> \(\widehat{EAC}=\widehat{EDC}\) (2 góc tương ứng)
d, Vì MN // AD => \(\dfrac{ME}{DE}=\dfrac{MN}{AD}\)
Xét △MEN và △DEA có :
\(\dfrac{ME}{DE}=\dfrac{MN}{AD} (cmt)\)
\(\widehat{EMN}=\widehat{EDA}( so le)\)
=> △MEN = △DEA (c.g.c)
=> \(\widehat{MEN}=\widehat{DEA}\) (2 góc tương ứng)
Mà 2 góc ở vị trí đối đỉnh với nhau
=> A , E , N thẳng hàng
Cho tam giác ABC có ba góc nhọn (AB < AC). Kẻ AH vuông góc với BC tại H. Trên đoạn
thằng HC lấy điểm E sao cho HE = HB.
a) Chứng minh tam giác AHB = tam giác AHE
b) Trên tia đối tia HA lấy điểm D sao cho HD = HA . Chứng minh DE // AB.
c) Chứng minh góc EAC = góc EDC
d) Tia DE cắt AC tại M, AE cắt DC tại N. Chứng minh MN vuông góc với BC từ đó suy ra MN//AD
e/ Trên tia AB và DE lần lượt lấy điểm I và K sao cho AI=DK. Chứng minh K,H,I thẳng hàng
giúp mik vs ạ mik đang cần gấp
a: Xét ΔAHB vuông tại H và ΔAHE vuông tại H có
AH chung
HB=HE
Do đó: ΔAHB=ΔAHE
b: Xét tứ giác ABDE có
H là trung điểm chung của AD và BE
=>ABDE là hình bình hành
=>DE//AB
c: Xét ΔCAD có
CH vừa là đường cao, vừa là đường trung tuyến
Do đó: ΔCAD cân tại C
=>CA=CD
Xét ΔEAD có
EH là đường cao, là đường trung tuyến
Do đó: ΔEAD cân tại E
=>EA=ED
Xét ΔCAE và ΔCDE có
CA=CD
AE=DE
CE chung
Do đó; ΔCAE=ΔCDE
=>\(\widehat{EAC}=\widehat{EDC}\)
d: Xét ΔNEA và ΔMED có
\(\widehat{NEA}=\widehat{MED}\)
EA=ED
\(\widehat{NAE}=\widehat{MDE}\)
Do đó: ΔNEA=ΔMED
=>AN=MD
CN+NA=CA
CM+MD=CD
mà CA=CD và AN=MD
nên CN=CM
Xét ΔCAD có CN/NA=CM/MD
nên NM//AD
=>NM\(\perp\)BC
e: Xét tứ giác AIDK có
AI//DK
AI=DK
Do đó: AIDK là hình bình hành
=>AD cắt IK tại trung điểm của mỗi đường
mà H là trung điểm của AD
nên H là trung điểm của KI
=>K,H,I thẳng hàng
Cứu mình câu này với (chỉ câu d thôi nhé):
Cho tam giác ABC cân tại . Kẻ AH vuông góc với BC tại H
a) Chứng minh tam giác AHB = tam giác AHC
b) Kẻ HD vuông góc với AB tại D, HE vuông góc với AC tại E. Chứng minh tam giác DHB = tam giác EHC
c) Chứng minh AH là trung trực của DE
d) Trên tia đối của HD lấy điểm F sao cho HD = HF. Chứng minh tam giác EDF là tam giác vuông
d) Vì tam giác DHB=tam giác EHC(cmb)=>HD=HE(2 cạnh tương ứng)
Mà H thuộc EF và HD=HF(theo đề bài)
=>HE=HD=HF=DF/2
Tam giác DEF có đường trung tuyến EH bằng 1/2 đáy DF tương ứng=>Tam giác DEF vuông tại E.
: Cho tam giác ABC cân tại A, Kẻ AH 1 BC (H thuộc BC)
a, Chứng minh HB = HC
b, Kẻ HD 1 AB tại D, kẻ HE 1 AC tại E. Chứng minh HA là phân giác của góc DHE
c, Chứng minh DE / BC
Lời giải:
a. Xét tam giác $ABH$ và $ACH$ có:
$AB=AC$ (do $ABC$ là tg cân)
$AH$ chung
$\widehat{AHB}=\widehat{AHC}=90^0$
$\Rightarrow \triangle AHB=\triangle AHC$ (ch-cgv)
$\Rightarrow HB=HC$.
b. Xét tam giác $AHD$ và $AHE$ có:
$AH$ chung
$\widehat{A_1}=\widehat{A_2}$ (do 2 tam giác bằng nhau phần a)
$\widehat{ADH}=\widehat{AEH}=90^0$
$\Rightarrow \triangle AHD=\triangle AHE$ (ch-gn)
$\Rightarrow \widehat{AHD}=\widehat{AHE}$
$\Rightarrow HA$ là tia phân giác góc $\widehat{DHE}$
c.
Từ tam giác bằng nhau phần b thì suy ra $AD=AE$
$\Rightarrow ADE$ là tam giác cân tại $A$
$\Rightarrow \widehat{AED}=\frac{1}{2}(180^0-\widehat{A})(1)$
Tam giác $ABC$ cân tại $A$
$\Rightarrow \widehat{ACB}=\frac{1}{2}(180^0-\widehat{A})(2)$
Từ $(1); (2)\Rightarrow \widehat{AED}=\widehat{ACB}$
Hai góc này ở vị trí đồng vị nên $DE\parallel BC$