Tìm x:
1)3x^2-17x+10=0
2)x^4-4x^3+5x^2-4x+4+0
\(4x^2+5x-9=0\)
\(x^2-5x+4=0\)
\(5x^2-17x+12=0\)
\(x^2-3x-4=0\)
a: \(\Leftrightarrow4x^2+9x-4x-9=0\)
=>(4x+9)(x-1)=0
=>x=1 hoặc x=-9/4
b: \(\Leftrightarrow x^2-x-4x+4=0\)
=>(x-1)(x-4)=0
=>x=1 hoặc x=4
c: \(\Leftrightarrow5x^2-5x-12x+12=0\)
=>(x-1)(5x-12)=0
=>x=12/5 hoặc x=1
d: \(\Leftrightarrow x^2-4x+x-4=0\)
=>(x-4)(x+1)=0
=>x=4 hoặc x=-1
a, Ta có a + b + c = 4 + 5 - 9 = 0
vậy pt có 2 nghiệm x = 1 ; x = -9/4
b, Ta có a + b + c = 1 - 5 + 4 = 0
vậy pt có 2 nghiệm x = 1 ; x = 4
c, Ta có a + b + c = 5 - 17 + 12 = 0
vậy pt có 2 nghiệm x = 1 ; x = 12/5
d, Ta có a - b + c = 1 + 3 - 4 = 0
vậy pt có 2 nghiệm x = -1 ; x = 4
Tìm x
/9-7x/=5x-38x-/4x+1/=x+2/17x-5/-/17x+5/=0/3x+4/=2/2x-9/1.\(\left|9-7x\right|=5x-3\)
\(\Leftrightarrow\orbr{\begin{cases}9-7x=5x-3\\9-7x=-5x-3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}-7x-5x=-9-3\\-7x+5x=-9-3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}-12x=-12\\-2x=-12\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-12:\left(-12\right)\\x=-12:\left(-2\right)\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=6\end{cases}}\)
2.\(8x-\left|4x+1\right|=x+2\)
\(\Rightarrow\left|4x+1\right|=8x-x+2\)
\(\Rightarrow\left|4x+1\right|=7x+2\)
\(\Leftrightarrow\orbr{\begin{cases}4x+1=7x+2\\4x+1=-7x+2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}4x-7x=2-1\\4x+7x=2-1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}-3x=1\\11x=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1:\left(-3\right)\\x=1:11\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{3}\\x=\frac{1}{11}\end{cases}}\)
1) (x2-4x+4).(x2+4x+4)-(7x+4)2=0
2 )x3-8x2+17x-10=0
3 ) 2x3-5x2-x+6=0
4 ) 4x4-4x2-3=0
1) Ta có: \(\left(x^2-4x+4\right)\left(x^2+4x+4\right)-\left(7x+4\right)^2=0\)
\(\Leftrightarrow\left(x-2\right)^2\cdot\left(x+2\right)^2-\left(7x+4\right)^2=0\)
\(\Leftrightarrow\left[\left(x-2\right)\left(x+2\right)\right]^2-\left(7x+4\right)^2=0\)
\(\Leftrightarrow\left(x^2-4\right)^2-\left(7x+4\right)^2=0\)
\(\Leftrightarrow\left(x^2-4-7x-4\right)\left(x^2-4+7x+4\right)=0\)
\(\Leftrightarrow\left(x^2-7x-8\right)\left(x^2+7x\right)=0\)
\(\Leftrightarrow x\left(x+7\right)\left(x^2-8x+x-8\right)=0\)
\(\Leftrightarrow x\left(x+7\right)\left[x\left(x-8\right)+\left(x-8\right)\right]=0\)
\(\Leftrightarrow x\left(x+7\right)\left(x-8\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+7=0\\x-8=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-7\\x=8\\x=-1\end{matrix}\right.\)
Vậy: S={0;-7;8;-1}
2) Ta có: \(x^3-8x^2+17x-10=0\)
\(\Leftrightarrow x^3-2x^2-6x^2+12x+5x-10=0\)
\(\Leftrightarrow x^2\left(x-2\right)-6x\left(x-2\right)+5\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2-6x+5\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2-x-5x+5\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-1\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-1=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\\x=5\end{matrix}\right.\)
Vậy: S={2;1;5}
3) Ta có: \(2x^3-5x^2-x+6=0\)
\(\Leftrightarrow2x^3-4x^2-x^2+2x-3x+6=0\)
\(\Leftrightarrow2x^2\left(x-2\right)-x\left(x-2\right)-3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x^2-x-3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x^2-3x+2x-3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[x\left(2x-3\right)+\left(2x-3\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x-3\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\2x-3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\2x=3\\x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{3}{2}\\x=-1\end{matrix}\right.\)
Vậy: \(S=\left\{2;\frac{3}{2};-1\right\}\)
4) Ta có: \(4x^4-4x^2-3=0\)
\(\Leftrightarrow4x^4-6x^2+2x^2-3=0\)
\(\Leftrightarrow2x^2\left(2x^2-3\right)+\left(2x^2-3\right)=0\)
\(\Leftrightarrow\left(2x^2-3\right)\left(2x^2+1\right)=0\)
mà \(2x^2+1>0\forall x\in R\)
nên \(2x^2-3=0\)
\(\Leftrightarrow2x^2=3\)
\(\Leftrightarrow x^2=\frac{3}{2}\)
hay \(x=\pm\sqrt{\frac{3}{2}}\)
Vậy: \(S=\left\{\sqrt{\frac{3}{2}};-\sqrt{\frac{3}{2}}\right\}\)
Tìm x:
a. |x - 1| = 2x - 5
b. ||x + 5| - 4| = 3
c. |9 - 7x| = 5x - 3
d. 8x - |4x + 1| = x + 2
e. |17x - 5| - |17x +5| = 0
f. |3x + 4| = 2.|2x - 9|
giải phương trình:
a, x^3 - 5x^2 + 6x - 4=0
b,x^3 - 7x + 6=0
c, x^3 + 8x^2 + 17x + 10=0
d,x(x+1)(x+2)(x+3) = -1
e, (4x+1)(12x-1)(3x+2)(x+1)=4
1) (3x - 2)(4x + 5) = 0
2) (4x + 2)(x2 + 3) = 0
3) (2x + 7)(x - 3)(5x - 1) = 0
4) x2 - 3x = 0
5) x2 - x = 0
1
(3x-2)(4x+5)=0
⇔ 3x-2=0 -> x= 2/3
⇔ 4x-5=0 x= 5/4
Vậy tập nghiệm S = { 2/3; 5/4}
2, (4x+2)(\(X^2\)+3)=0
⇔ 4x+2=0 -> x= -1/2
\(x^2\)+3=0 -> x= \(\sqrt{3}\); -\(\sqrt{3}\)
Vaayj tập nghiệm S= { -1/2; \(\sqrt{3}\);-\(\sqrt{3}\)}
3)
(2x+7)(x-3)(5x-1)=0
⇔ 2x+7=0 -> x= -7/2
x-3 =0 -> x = 3
5x-1 =0 -> x= 1/5
Vậy tập nghiệm S={ -7/2; 3; 1/5}
Tìm x, biết:
a) (2x + 3)3 - (2x + 1) . (2x - 1) = 22
b) (4x + 3) . (4x - 3) - (4x - 5)2 = 46
c) (3x + 4)2 + (5x - 2)2 - 2x. (17x - 1) = 10
d) (4x -1)2 - (4x + 3)2 - (x - 3) = 4
a, (2x^3 - 5x^2 - x + 1):( 2x + 1 )
b, ( 4x^3 - 2x^4 + x^5 - 3x^2 + 1 ):( x^2 - 2x + 3 )
c, ( -3x^3 + 7x^2 - 17x + 10 ):( 3x - 1 )
d, ( x^2 - 2x + 1 ):( x - 1 )
e, [ x^2 - 4 + ( x - 2 )^2 ]:( x - 2 )
f, ( 125x^3 + 1 ):( 5x + 1 )
Thực hiện phép chia
a) (5x^4+3x-1-3x^5):(1+x-x^2)
b) ( 2-4x +3x^4+7x^2-5x^3):(1+x^2-x)
c) ( 17x^2-6x^4+5x^3-23x+7):(7-3x^2-2x)