rut gon bieu thuc
(a+b-c)2+(a-b-c)2+(b-c-a)2+(c-b-a)2
Rut gon bieu thuc: (a-b+c)^2+2(a-b+c)(b-c)+(b-c)^2
Dùng hằng đẳng thức A2 + 2AB + B2 = ( A + B)2 :
Ta được ... = (a-b+c+b-c)2 = a2
rut gon bieu thuc
(a+b-c)2+(a-b+c)2-2(b-c)2
(a+b-c)^2 + (a-b+c)^2 - 2(b-c)^2
= (a + b - c)^2 - (b - c)^2 + (a - b + c)^2 - (b - c)^2
= (a + b - c + b - c)(a + b - c - b + c) + (a - b + c - b + c)(a - b + c + b - c)
= a^2 + a^2
= 2.a^2
rut gon bieu thuc
(a+b-c)^2 - (a-c)^2- 2ab+ 2bc
\(\left(a+b-c\right)^2-\left(a-c\right)^2-2ab+2bc\)
\(=\left(a-c\right)^2+2b\left(a-c\right)+b^2-\left(a-c\right)^2-2ab+2bc\)
\(=2b\left(a-c\right)+b^2-2ab+2bc\)
\(=2ab-2bc+b^2-2ab+2bc=b^2\)
Rut gon bieu thuc : (a+b-c)2 + (a-b+c)2 -2(b-c)2
Ta có : (a + b - c)2 + (a - b + c)2 - 2(b - c)2
= a² + b² + c² + 2ab - 2bc - 2ca + a² + b² + c² + 2ca - 2ab - 2bc - 2(b2 - 2bc + c2)
= a² + b² + c² + 2ab - 2bc - 2ca + a² + b² + c² + 2ca - 2ab - 2bc - b2 + 2bc - c2
= 2a2 + b2 + c2 - 2bc
cho bieu thuc A = [ -a - b + c ] - [ -a - b -c ]
rut gon a . tih gi tri A khi a = 1 , b = -1 , c = -2
Ta có A=(-a-b+c)-(-a-b-c)
=-a-b+c+a+b+c
=(-a+a)+(-b+b)+(-c+c)
=0
Khi a=1 ; b=-1;c=2
Thì A =(-1+1+2)-(-1+1-2)
=2-2
=0
rut gon bieu thuc
(a+b)\(^2\)+(b+c)\(^2\)+(c+a)\(^2\)-3(a+b)(b+c)(c+a)
cho a,b,c khac nhau doi mot va 1/a+1/b+1/c=0.rut gon cac bieu thuc
N=bc/a^2+2bc+CA/B^2+2AC+AB/C^2+2AB
rut gon bieu thuc sau:
(a2+b2+c2)-(a2+b2+c2)2
\(\left(a^2+b^2+c^2\right)-\left(a^2+b^2+c^2\right)^2\)
\(=\left(a^2+b^2+c^2\right)\left(1-a^2+b^2+c^2\right)\)
\(=\left(a^2+b^2+c^2\right)\left[\left(1-a\right)\left(1+a\right)+b^2+c^2\right]\)
mik làm thế này k bít có đúng k
Bài làm
( a2 + b2 + c2 ) - ( a2 + b2 + c2 )2
= ( a2 + b2 + c2 ) - ( a2 + b2 + c2 + a2b2 + a2c2 + b2c2 )
= a2 + b2 + c2 - a2 - b2 - c2 - a2b2 - a2c2 - b2c2
= -( a2b2 + a2c2 + b2c2 )
Bình Gold. Ta nghĩ -( a^2 + b^2 + c^2 )^2 khác vs ( 1 - a^2 + b^2 + c^2 )^2 vs cả các k đổi dấu dù cho âm vào ngoặc.
Cho a+b+c=0. Rut gon bieu thuc M=a3+b3+c(a2+b2)-abc
a+b+c=0 <=> c = -a-b
M = a3+b3+c(a2+b2)-abc
M = a3+b3+(-a-b)(a2+b2)-abc
M = a3+b3-a3-a2b-ab2-b3-abc
M = -a2b-ab2-abc
M = -ab(a+b+c)
M = -ab.0 = 0