Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Xem chi tiết
HT.Phong (9A5)
29 tháng 8 2023 lúc 16:24

2) \(-x^2+4x-2\)

\(=-\left(x^2-4x+2\right)\)

\(=-\left(x^2-4x+4-2\right)\)

\(=-\left(x-2\right)^2+2\)

Ta có: \(-\left(x-2\right)^2\le0\forall x\)

\(\Rightarrow-\left(x-2\right)^2+2\le2\forall x\)

Dấu "=" xảy ra:

\(\Leftrightarrow-\left(x-2\right)^2+2=2\Leftrightarrow x=2\)

Vậy: GTLN của bt là 2 tại x=2

b) \(\sqrt{2x^2-3}\) (ĐK: \(x\ge\sqrt{\dfrac{3}{2}}\))

Mà: \(\sqrt{2x^2-3}\ge0\forall x\)

Dấu "=" xảy ra:

\(\sqrt{2x^2-3}=0\Leftrightarrow x=\sqrt{\dfrac{3}{2}}=\dfrac{3\sqrt{2}}{2}\)

Vậy GTNN của bt là 0 tại \(x=\dfrac{3\sqrt{2}}{2}\)

...

Nguyễn Lê Phước Thịnh
29 tháng 8 2023 lúc 20:09

1:

b: \(4\sqrt{5}=\sqrt{80}\)

\(5\sqrt{3}=\sqrt{75}\)

=>\(4\sqrt{5}>5\sqrt{3}\)

=>\(\sqrt{4\sqrt{5}}>\sqrt{5\sqrt{3}}\)

c: \(3-2\sqrt{5}-1+\sqrt{5}=2-\sqrt{5}< 0\)

=>\(3-2\sqrt{5}< 1-\sqrt{5}\)

d: \(\sqrt{2006}-\sqrt{2005}=\dfrac{1}{\sqrt{2006}+\sqrt{2005}}\)

\(\sqrt{2005}-\sqrt{2004}=\dfrac{1}{\sqrt{2005}+\sqrt{2004}}\)

\(\sqrt{2006}+\sqrt{2005}>\sqrt{2005}+\sqrt{2004}\)

=>\(\dfrac{1}{\sqrt{2006}+\sqrt{2005}}< \dfrac{1}{\sqrt{2005}+\sqrt{2004}}\)

=>\(\sqrt{2006}-\sqrt{2005}< \sqrt{2005}-\sqrt{2004}\)

e: \(\left(\sqrt{2003}+\sqrt{2005}\right)^2=4008+2\cdot\sqrt{2003\cdot2005}=4008+2\cdot\sqrt{2004^2-1}\)

\(\left(2\sqrt{2004}\right)^2=4\cdot2004=4008+2\cdot\sqrt{2004^2}\)

=>\(\left(\sqrt{2003}+\sqrt{2005}\right)^2< \left(2\sqrt{2004}\right)^2\)

=>\(\sqrt{2003}+\sqrt{2005}< 2\sqrt{2004}\)

Xem chi tiết
Nguyễn Việt Lâm
4 tháng 8 2021 lúc 19:18

\(\sqrt{2004}-\sqrt{2003}=\dfrac{1}{\sqrt{2004}+\sqrt{2003}}\)

\(\sqrt{2006}-\sqrt{2005}=\dfrac{1}{\sqrt{2006}+\sqrt{2005}}\)

Mà \(\sqrt{2004}+\sqrt{2003}< \sqrt{2006}< \sqrt{2005}\)

\(\Rightarrow\dfrac{1}{\sqrt{2004}+\sqrt{2003}}>\dfrac{1}{\sqrt{2006}+\sqrt{2005}}\)

\(\Rightarrow\sqrt{2004}-\sqrt{2003}>\sqrt{2006}-\sqrt{2005}\)

Shin
Xem chi tiết
Arceus Official
Xem chi tiết
lê dạ quỳnh
17 tháng 6 2017 lúc 20:56

lấy vế đầu trừ vế sau nếu kết quả dương suy ra vế đầu lớn hơn nếu kq âm thì vế sau lớn hơn

tống thị quỳnh
17 tháng 6 2017 lúc 21:24

\(\sqrt{2006}-\sqrt{2005}=\frac{\left(\sqrt{2006}-\sqrt{2005}\right)\left(\sqrt{2006}+\sqrt{2005}\right)}{\sqrt{2006}+\sqrt{2005}}\)\(=\frac{1}{\sqrt{2006}+\sqrt{2005}}\)

\(\sqrt{2005}-\sqrt{2004}=\frac{\left(\sqrt{2005}-\sqrt{2004}\right)\left(\sqrt{2005}+\sqrt{2004}\right)}{\sqrt{2005}+\sqrt{2004}}\)\(=\frac{1}{\sqrt{2005}+\sqrt{2004}}\)

ta lại có 2006>2005\(\Rightarrow\sqrt{2006}>\sqrt{2005}\)có 2005>2004\(\Rightarrow\sqrt{2005}>\sqrt{2004}\)

\(\Rightarrow\sqrt{2006}+\sqrt{2005}>\sqrt{2005}+\sqrt{2004}\)\(\Rightarrow\frac{1}{\sqrt{2006}+\sqrt{2005}}< \frac{1}{\sqrt{2005}+\sqrt{2004}}\)

\(\Rightarrow\sqrt{2006}-\sqrt{2005}>\sqrt{2005}-\sqrt{2004}\)

Pé Ken
Xem chi tiết
Đoàn Thị Huyền Đoan
1 tháng 8 2016 lúc 8:30

\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}×\sqrt{2004-2\sqrt{2006}-2\sqrt{2005}}=\sqrt{2004-2\sqrt{2006-2\sqrt{2005}}}\)

Hanh Vu
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 1 2022 lúc 1:10

a: \(\left(\sqrt{3}+\sqrt{5}\right)^2=8+\sqrt{60}\)

\(\left(\sqrt{17}\right)^2=17=8+\sqrt{81}\)

mà 60<81

nên \(3+\sqrt{5}< \sqrt{17}\)

c: \(\left(\sqrt{2004}+\sqrt{2006}\right)^2=4010+2\cdot\sqrt{2005^2-1}\)

\(\left(2\cdot\sqrt{2005}\right)^2=8020=4010+2\cdot\sqrt{2005^2}\)

mà \(2005^2-1< 2005^2\)

nên \(\sqrt{2004}+\sqrt{2006}< 2\sqrt{2005}\)

d: \(\left(\sqrt{5}+2\right)^2=9+4\sqrt{5}=9+\sqrt{80}\)

\(\left(\sqrt{3}+\sqrt{6}\right)^2=9+2\cdot\sqrt{3\cdot6}=9+\sqrt{72}\)

mà 80>72

nên \(\sqrt{5}+2>\sqrt{3}+\sqrt{6}\)

vu thi hong hanh
Xem chi tiết
James Pham
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 8 2021 lúc 20:39

a: \(4\sqrt{7}=\sqrt{4^2\cdot7}=\sqrt{112}\)

\(3\sqrt{13}=\sqrt{3^2\cdot13}=\sqrt{117}\)

mà 112<117

nên \(4\sqrt{7}< 3\sqrt{13}\)

b: \(3\sqrt{12}=\sqrt{3^2\cdot12}=\sqrt{108}\)

\(2\sqrt{16}=\sqrt{16\cdot2^2}=\sqrt{64}\)

mà 108>64

nên \(3\sqrt{12}>2\sqrt{16}\)

c: \(\dfrac{1}{4}\sqrt{84}=\sqrt{\dfrac{1}{16}\cdot84}=\sqrt{\dfrac{21}{4}}\)

\(6\sqrt{\dfrac{1}{7}}=\sqrt{36\cdot\dfrac{1}{7}}=\sqrt{\dfrac{36}{7}}\)

mà \(\dfrac{21}{4}>\dfrac{36}{7}\)

nên \(\dfrac{1}{4}\sqrt{84}>6\sqrt{\dfrac{1}{7}}\)

d: \(3\sqrt{12}=\sqrt{3^2\cdot12}=\sqrt{108}\)

\(2\sqrt{16}=\sqrt{16\cdot2^2}=\sqrt{64}\)

mà 108>64

nên \(3\sqrt{12}>2\sqrt{16}\)

Phi Yến Trần Phan
Xem chi tiết
bảo nam trần
24 tháng 5 2016 lúc 13:18

Giả sử : \(\sqrt{2004}+\sqrt{2006}< 2\sqrt{2005}\)

\(\Leftrightarrow2004+2006+2\sqrt{2004.2006}< 4.2005\)

\(\Leftrightarrow\sqrt{2004.2006}< 2005\Leftrightarrow2004.2006< 2005^2\)

\(\Leftrightarrow\left(2005-1\right)\left(2005+1\right)< 2005^2\)

\(\Leftrightarrow2005^2-1< 2005^2\) . BĐT đúng

Vậy \(\sqrt{2004}+\sqrt{2006}< 2\sqrt{2005}\)

Nguyễn Thị Lan Hương
27 tháng 5 2016 lúc 13:25

Giả sử : \(\sqrt{2004}+\sqrt{2006}< 2\sqrt{2005}\) 

\(\Leftrightarrow2004+2006+2\sqrt{2004.2006}< 4.2005\)

\(\Leftrightarrow\sqrt{2004.2006}< 2005\Leftrightarrow2004.2006< 2005^2\)

\(\Leftrightarrow\left(2005-1\right)\left(2005+1\right)< 2005^2\)

\(\Leftrightarrow2005^2-1< 2005^2.\) BĐT đúng

Vậy \(\sqrt{2004}+\sqrt{2006}< 2\sqrt{2005}\)