Cho A = 3^0 +3^1+.....+3^2008 và B=3^2009
CMR: 2.A và B là 2 số nguyên liên tiếp
Cho A=3^0 +3^1 + 3^2 +3^3+.....+ 3^2008 và B = 3^2009
Chứng tỏ rằng 2A và B là 2 số liên tiếp
Ta có: A = 30 + 31 + 32 + 33 +...+ 32008
Nhân hai vế cho 3, ta có:
3A = 31 + 32 + 33 + 34+...+ 32009
Trừ 3A cho A, ta được:
3A - A= ( 31 + 32 + 33 +34+...+ 32009) - ( 30 + 31 +32 + 33 +....+ 32008)
2A = 31 + 32 + 33 + 34 +... + 32009 - 30 - 31 - 32 - 33 -...- 32008
2A = 1 + 32009
Mà B = 32009
Vậy 2A và B là hai số tự nhiên liên tiếp ( hơn kém nhau 1 đơn vị)
cho \(A=3^0+3^1+3^2+...+3^{2008}\)
\(B=3^{2008}\)
chứng tỏ 2A và B là 2 sốnguyên liên tiếp
Sửa \(A=3^0+3^1+3^2+......+3^{2007}\)
\(3A=3^1+3^2+......+3^{2008}\)
\(3A-A=\left(3^1+3^2+.....+3^{2008}\right)-\left(3^0+3^1+....+3^{2007}\right)\)
\(2A=3^{2008}-1\)
Có : \(2A=3^{2008}-1\)
\(B=3^{2008}\)
=> 2A , B là 2 số ........................
Sai đề rồi bạn nhé
Mình nghĩ B = \(3^{2009}\)cơ
Đây nhé
2A = 3A - A = \(3\left(3^0+3^1+3^2+....+3^{2008}\right)\)-\(\left(3^0+3^1+3^2+....+3^{2008}\right)\)
=\(3+3^2+3^3+.....+3^{2009}\)\(-3^0-3-3^2-....-3^{2008}\)
=\(3^{2009}-3^0\)
=\(3^{2009}-1\)=> 2A = \(3^{2009}-1\)
Vậy 2A ít hơn B 1 đơn vị ( vì B = \(3^{2009}\)nhé)
Vậy 2A và B là 2 số tự nhiên liên tiếp
\(A=3^0+3^1+3^2+...+3^{2008}\)
\(3A=3^1+3^2+3^3+...+3^{2009}\)
\(3A-A=3^{2009}-1\)
\(2A=3^{2009}-1\)
Đến đây mik không biết làm sao nữa
Cho A= 3^0+3^1+3^2+...+3^2018 và B = 3 chứng tỏ 2A và B là 2 số nguyên liên tiếp.
Mn giúp mik nha!\(A=3^0+3^1+3^2+...+3^{2018}\)
\(3A=3^1+3^2+3^3+...+3^{2018}+3^{2019}\)
\(\Rightarrow3A-A=\left(3^1+3^2+...+3^{2019}\right)-\left(3^0+3^1+...+3^{2018}\right)\)
\(2A=3^{2019}-3^0=3^{2019}-1\)
Cho :
A = 30 +31 + 32 + ... + 32008
B = 32009
Chứng tỏ : 2A và B là hai số liên tiếp
A=1+3^1+3^2+...+3^2008
3A=3(1+3^1+3^2+...+3^2008)
3A=3*1+3*3^1+3*3^2+...+3*3^2008
3A=3+3^2+3^3+...+3^2009
3A-A=(3+3^2+3^3+...+3^2009)-(1+3^1+3^2+...+3^2008)
A=(3^2009-1):2
=>2A=(3^2009-1):2
<=>A=3^2009-1
vi 2 so lien tiep hon kem nhau 1 don vi
=>3^2009-1 va 3^2009 la 2 so lien tiep
=>2A va B la 2 so tu nhien lien tiep
gọi a và b là 2 số nguyên tố liên tiếp nếu giữa a và b ko có số nguyên nào khác.Hãy tìm tất cả các bộ 3 số nguyên tố liên tiếp a,b,c sao cho a^2+b^2+c^2 cũng là số nguyên tố
Cho A = 2^0 + 2^1 + 2^2 + 2^3 + .... + 2^19 . Và B = 2^20. Chứng minh rằng A và B là hai số tự nhiên liên tiếp.
\(2A=2^1+2^2+...+2^{20}\)
nên \(A=2^{20}-1\)
Vậy: A và B là hai số tự nhiên liên tiếp
\(2A=2+2^2+2^3+...+2^{20}\\ \Leftrightarrow2A-A=2+2^2+...+2^{20}-1-2-2^2-...-2^{19}\\ \Leftrightarrow A=2^{20}-1\)
Mà \(B=2^{20}\) nên ta có đpcm
Ta có A = 1 + 2 + 22 + 23 + ... + 219
=> 2A = 2 + 22 + 23 + 24 + ... + 220
=> 2A - A = (2 + 22 + 23 + 24 + ... + 220) - (1 + 2 + 22 + 23 + ... + 219)
=> A = 220 - 1
Lại có B = 220
=> A và B là 2 số tự nhiên liên tiếp
Tick cho mình nhé !!
1 .Cho 3 số a,b,c nguyên trong đó 2 số nguyên âm và một số nguyên dương . Nếu a.b=c^2008 hãy cho biết a,b,c là các số gì?
2. tìm x thuộc Z biết x+(x+1)+(x+2)+...+2008 = 2008
cho A =2\(^0\)+2\(^1\)+2\(^2\)+2\(^3\)+...+2\(^{19}\).Và B=20\(^{20}\). chứng minh rằng A và B là số tự nhiên liên tiếp
khó lắm
A=1+2 mũ 1 +2 mũ 2 + ......+2 mũ 19
suy ra 2A=2 mũ + 2 mũ 2 + ........+ 2 mũ 20
suy ra A = [ 2 mũ 1 + 2 mũ 2 + .......+ 2 mũ 20 ] - [ 1 + 2 mũ 1 + 2 mũ 2 + ....... + 2 mũ 19 ]
suy ra A = 2 mũ 20 -1
suy ra A và B là 2 số tự nhiên liên tiếp
Ko tắt đâu
Ta có:
\(A=2^0+2^1+2^2+2^3+...+2^{19}\)
\(A=1+2+2^2+2^3+...+2^{19}\)
\(2A=2+2^2+2^3+2^4+...+2^{20}\)
\(2A-A=\left(2+2^2+2^3+2^4...+2^{20}\right)-\left(1+2+2^2+2^3+...+2^{19}\right)\)
\(A=2^{20}-1\)
\(\Rightarrow A=2^{20}-1;B=2^{20}\) là hai số liên tiếp.
Vậy...
\(#tutuuu...\)
Cho 2 số tự nhiên liên tiếp a và b ( 0 < a < b ) sao cho 1/b < 3/4 < 1/a . tìm a và b