Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bùi Nhâm Tú
Xem chi tiết
Trần Chí Công
Xem chi tiết
Tài Nguyễn Tuấn
19 tháng 8 2015 lúc 19:30

Giải.

Theo tỉ lệ thức thì \(x\times5=y\times3=135\)

Vậy \(x=\frac{135}{5}=27;y=\frac{135}{3}=45\)

Bài 2 : Ta có :

\(\frac{a-b}{b}=\frac{a}{b}-\frac{b}{b}=\frac{a}{b}-1;\frac{c-d}{d}=\frac{c}{d}-\frac{d}{d}=\frac{c}{d}-1\)

Mà \(\frac{a}{b}=\frac{c}{d}\)nên \(\frac{a-b}{b}=\frac{c-d}{d}\)

Nao Tomori
19 tháng 8 2015 lúc 19:29

trong sách giáo khoa lớp 7 có 1 bài tương tự như thế, đặt k ra

doremon
19 tháng 8 2015 lúc 19:31

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\Rightarrow\frac{a-b}{b}=\frac{c-d}{d}\)(đpcm)

Lê Thị Ngọc Lan
Xem chi tiết
Lê Thanh Trúc
Xem chi tiết
Phạm Gia Khánh
22 tháng 11 2018 lúc 21:11

bn có lời giải chưa

Quyết Tâm Chiến Thắng
Xem chi tiết
tth_new
7 tháng 9 2019 lúc 10:54

Làm bài này một hồi chắc bay não:v

Bài 1:

a) Áp dụng BĐT AM-GM:

\(VT\le\frac{a+b}{4}+\frac{b+c}{4}+\frac{c+a}{4}=\frac{a+b+c}{2}^{\left(đpcm\right)}\)

Đẳng thức xảy ra khi a = b = c.

b)Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có đpcm.

Bài 2:

a) Dấu = bài này không xảy ra ? Nếu đúng như vầy thì em xin một slot, ăn cơm xong đi ngủ rồi dậy làm:v

b) Theo BĐT Bunhicopxki:

\(VT^2\le3.\left[\left(a+b\right)+\left(b+c\right)+\left(c+a\right)\right]=6\Rightarrow VT\le\sqrt{6}\left(qed\right)\)

Đẳng thức xảy r akhi \(a=b=c=\frac{1}{3}\)

Bài 3: Theo BĐT Cauchy-Schwarz và bđt AM-GM, ta có:

\(VT\ge\frac{4}{2-\left(x^2+y^2\right)}\ge\frac{4}{2-2xy}=\frac{2}{1-xy}\)

tth_new
7 tháng 9 2019 lúc 10:56

Nói trước là bài 3 em không chắc, tự dưng thấy tại sao lại có đk \(\left|x\right|< 1;\left|y\right|< 1?!?\) Chẳng lẽ lời giải của em sai hay là đề thừa?

Quyết Tâm Chiến Thắng
7 tháng 9 2019 lúc 11:04

tth-new ơi Bài 1 câu a áp dụng BĐT AM-GM cho 2 số nào thế ạ

Học Tập
Xem chi tiết
vietdat vietdat
Xem chi tiết
tthnew
3 tháng 10 2019 lúc 18:30

a) Áp dụng BĐT Cauchy-Schwarz dạng Engel:

\(VT=\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\)

Đẳng thức xảy ra khi a =b = c

b)Tương tự câu a

c)\(\sqrt{\frac{a}{b+c+d}}=\frac{a}{\sqrt{a\left(b+c+d\right)}}\ge\frac{2a}{a+b+c+d}\)

Tương tự 3 BĐT còn lại và cộng theo vế ta được \(VT\ge2\)

Nhưng dấu "=" không xảy ra nên ta có đpcm.

d) Chưa nghĩ ra.

Bài 2:

a) Đề thiếu (or sai hay sao ý)

Lê Thị Thục Hiền
3 tháng 10 2019 lúc 21:49

d, Với a,b >0.Áp dụng bđt svac-xơ có:

\(\frac{3}{a}+\frac{1}{b}=\frac{3}{a}+\frac{2}{2b}\ge\frac{\left(\sqrt{3}+\sqrt{2}\right)^2}{a+2b}=\frac{5+2\sqrt{6}}{a+2b}>\frac{\sqrt{24}+2\sqrt{6}}{a+2b}\)

=> \(\frac{3}{a}+\frac{1}{b}>\frac{4\sqrt{6}}{a+2b}\)

Kuruishagi zero
Xem chi tiết
Hoàng tử của mít
3 tháng 11 2018 lúc 22:29

\(x.y=12\Rightarrow y=\frac{12}{x}\) thay vào pt ta có : 

\(\frac{x}{3}=\frac{12}{\frac{x}{4}}\)

\(\Leftrightarrow\frac{x}{3}=\frac{3}{x}\) \(\Leftrightarrow x^2=9\) \(\Rightarrow Th1:x=3\Rightarrow y=4\)

\(Th2:x=-3\Rightarrow y=-4\)

Nguyệt
3 tháng 11 2018 lúc 22:38

đặt \(\frac{x}{3}=\frac{y}{4}=k\Rightarrow x=3k,y=4k\)

ta có:

\(x.y=3k.4k=12.k^2=12\Rightarrow k^2=1\Rightarrow\orbr{\begin{cases}k=1\\k=-1\end{cases}}\)

\(k=1\Rightarrow x=3.1=3,y=4.1=4\)

\(k=\left(-1\right)\Rightarrow x=3.\left(-1\right)=-3,y=4.\left(-1\right)=-4\)

vậy x=3,y=4 hay x=-3, y=-4

2.\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}\)

áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\left(1\right)\)

\(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{a}{c}\cdot\frac{a}{c}=\frac{a}{c}\cdot\frac{b}{d}=\frac{ab}{cd}\left(2\right)\)

từ (1) và (2) => \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}\left(đpcm\right)\)

Lê Tài Bảo Châu
Xem chi tiết
Kiệt Nguyễn
1 tháng 8 2020 lúc 8:33

Xét \(\frac{a^3}{a^2+ab+b^2}-\frac{b^3}{a^2+ab+b^2}=\frac{\left(a-b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=a-b\)

Tương tự, ta được: \(\frac{b^3}{b^2+bc+c^2}-\frac{c^3}{b^2+bc+c^2}=b-c\)\(\frac{c^3}{c^2+ca+a^2}-\frac{a^3}{c^2+ca+a^2}=c-a\)

Cộng theo vế của 3 đẳng thức trên, ta được: \(\left(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\right)\)\(-\left(\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\right)=0\)

\(\Rightarrow\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ca+a^2}\)\(=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+bc+c^2}+\frac{a^3}{c^2+ca+a^2}\)

Ta đi chứng minh BĐT phụ sau: \(a^2-ab+b^2\ge\frac{1}{3}\left(a^2+ab+b^2\right)\)(*)

Thật vậy: (*)\(\Leftrightarrow\frac{2}{3}\left(a-b\right)^2\ge0\)*đúng*

\(\Rightarrow2LHS=\Sigma_{cyc}\frac{a^3+b^3}{a^2+ab+b^2}=\Sigma_{cyc}\text{ }\frac{\left(a+b\right)\left(a^2-ab+b^2\right)}{a^2+ab+b^2}\)\(\ge\Sigma_{cyc}\text{ }\frac{\frac{1}{3}\left(a+b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}=\frac{1}{3}\text{​​}\Sigma_{cyc}\left[\left(a+b\right)\right]=\frac{2\left(a+b+c\right)}{3}\)

\(\Rightarrow LHS\ge\frac{a+b+c}{3}=RHS\)(Q.E.D)

Đẳng thức xảy ra khi a = b = c

P/S: Có thể dùng BĐT phụ ở câu 3a để chứng minhxD:

Khách vãng lai đã xóa
Phùng Minh Quân
27 tháng 7 2020 lúc 22:28

1) ta chứng minh được \(\Sigma\frac{a^4}{\left(a+b\right)\left(a^2+b^2\right)}=\Sigma\frac{b^4}{\left(a+b\right)\left(a^2+b^2\right)}\)

\(VT=\frac{1}{2}\Sigma\frac{a^4+b^4}{\left(a+b\right)\left(a^2+b^2\right)}\ge\frac{1}{4}\Sigma\frac{a^2+b^2}{a+b}\ge\frac{1}{8}\Sigma\left(a+b\right)=\frac{a+b+c+d}{4}\)

bài 2 xem có ghi nhầm ko

Khách vãng lai đã xóa
Phùng Minh Quân
27 tháng 7 2020 lúc 22:50

3a biến đổi tí là xong

b tuong tự bài 1 

Khách vãng lai đã xóa