\(\frac{2x+3}{5x+2}=\frac{4x+5}{10x+2}\)
Rút gọn
a)\(\frac{3}{2x+6}-\frac{x-6}{2x^2+6x}\)
b)\(\left\{\frac{2x+1}{2x-1}-\frac{2x-1}{2x+1}\right\}:\frac{4x}{10x-5}\)
c)\(\frac{x^2+x}{5x^2-10x+5}:\frac{3x+3}{5x-5}\)
\(a,\frac{3}{2x+6}-\frac{x-6}{2x^2+6x}\) (x khác -3; khác 0)
\(=\frac{3}{2\left(x+3\right)}-\frac{x-6}{2x.\left(x+3\right)}=\frac{3x}{2x.\left(x+3\right)}-\frac{x-6}{2x.\left(x+3\right)}=\frac{3x-x+6}{2x.\left(x+3\right)}=\frac{2x+6}{x.\left(2x+6\right)}=\frac{1}{x}\)
\(b,\left(\frac{2x+1}{2x-1}-\frac{2x-1}{2x+1}\right):\frac{4x}{10x-5}\) (x khác 0 , khác 1/2 khác -1/2 )
\(=\left(\frac{\left(2x+1\right)^2}{\left(2x-1\right)\left(2x+1\right)}-\frac{\left(2x-1\right)^2}{\left(2x-1\right)\left(2x+1\right)}\right).\frac{10x-5}{4x}\)
\(=\left(\frac{4x^2+4x+1}{\left(2x-1\right)\left(2x+1\right)}-\frac{4x^2-4x+1}{\left(2x-1\right)\left(2x+1\right)}\right).\frac{10x-5}{4x}\)
\(=\frac{8x}{\left(2x-1\right)\left(2x+1\right)}.\frac{5.\left(2x-1\right)}{4x}=\frac{10}{2x+1}\)
\(c,\frac{x^2+x}{5x^2-10x+5}:\frac{3x+3}{5x-5}\) (x khác 1 ; khác -1)
\(=\frac{x.\left(x+1\right)}{5.\left(x^2-2x+1\right)}.\frac{5x-5}{3x+3}=\frac{x.\left(x+1\right)}{5.\left(x-1\right)^2}.\frac{5\left(x-1\right)}{3.\left(x+1\right)}=\frac{x}{3.\left(x-1\right)}=\frac{x}{3x-3}\)
\(\frac{2x+3}{5x+2}=\frac{4x+5}{10x+2}\)
\(\frac{2x+3}{5x+2}=\frac{4x+5}{10x+2}\)
\(\Leftrightarrow\left(2x+3\right).\left(10x+2\right)=\left(5x+2\right).\left(4x+5\right)\)
\(\Leftrightarrow20x^2+4x+30x+6=20x^2+25x+8x+10\)
\(\Leftrightarrow4x+30x-25x-8x=10-6\)
\(\Leftrightarrow x=4\)
\(\frac{2x+3}{5x+2}=\frac{4x+5}{10x+2}\)
\(\Leftrightarrow\left(2x+3\right)\left(10x+2\right)=\left(4x+5\right)\left(5x+2\right)\)
\(\Leftrightarrow20x^2+4x+30x+6=20x^2+8x+25x+10\)
\(\Leftrightarrow20x^2-20x^2+4x+30x-8x-25x=10-6\)
\(\Leftrightarrow x=4\)
Rút gọn
a)\(\frac{3}{2x+6}-\frac{x-6}{2x^2+6x}\)
b)\(\left\{\hept{\begin{cases}2x+1\\2x-1\end{cases}-\frac{2x-1}{2x+1}}\right\}:\frac{4x}{10x-5}\)
c)\(\frac{x^2+x}{5x^2-10x+5}:\frac{3x+3}{5x-5}\)
\(\frac{2x+3}{5x+2}=\frac{4x+5}{10x+2};x=?\)
\(\frac{2x+3}{5x+2}=\frac{4x+5}{10x+2}\) m.n giúp mình với
Ta nhân tích chéo lên bạn nhé!
=> ( 2x + 3 )( 10x + 2) = ( 5x+2)(4x+5)
<=> 20x2 + 34x + 6 = 20x2 + 33x + 10
<=> x = 4 ( chỗ này chuyễn vế sang bạn nhé)
Sau đó kết luận thôi>>>>.......................
Tìm x biết\(\frac{2x+3}{5x+2}=\frac{4x+5}{10x+2}\)
(2X+3)(10X+2) = (5X+2)(4X+5)
\(20x^2+4x+30x+6=20x^2+25x+8x+10\)
x = 4
Tìm x:
a, \(\frac{2x+3}{5x+2}=\frac{4x+5}{10x+2}\)
b,\(\frac{3x-1}{40-5x}=\frac{25-3x}{5x-34}\)
a, 12 - 3. ( x - 2 ) = ( x + 2 ).( 1 - 3x ) + 2x
b, ( x + 5 ).( x + 2 ) = 3.( 4x - 2 ) + ( x - 5 )
c, \(\frac{x-5}{x^2-5x}-\frac{x-5}{2x^2-10x}=\frac{x+25}{2x^2-50}\)
d, 4x2 - 1 = ( 2x + 1 ).( 3x - 5 )
e, x2 - 5x + 6 = 0
a/ 12-3(x-2)=(x+2)(1-3x)+2x
\(\Leftrightarrow18-3x=-3x^2-3x+2\)
\(\Leftrightarrow3x^2=-16\left(vl\right)\)
=> phương trình vô nghiệm
b/\(\left(x+5\right)\left(x+2\right)\) =3(4x-2)+(x-5)
\(\Leftrightarrow x^2+3x+10=13x-11\)
\(\Leftrightarrow x^2-10x+21=0\)
\(\Leftrightarrow\left(x-7\right)\left(x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=7\\x=3\end{matrix}\right.\)
c/\(\frac{x-5}{x^2-5x}-\frac{x-5}{2x^2-10x}=\frac{x+25}{2x^2-50}\)(x khác 0)
\(\Leftrightarrow\frac{x-5}{x\left(x-5\right)}-\frac{x-5}{2x\left(x-5\right)}=\frac{x^2+25}{2x^2-50}\)
\(\frac{\Leftrightarrow1}{x}-\frac{1}{2x}=\frac{x+25}{2x^2-50}\)
\(\Leftrightarrow\frac{1}{2x}=\frac{x+25}{2x^2-50}\Leftrightarrow2x^2-50=2x^2+50x\)
\(\Leftrightarrow50x=-50\Leftrightarrow x=-1\)(tm)
d/4x2-1=(2x+1)(3x-5)
\(\Leftrightarrow4x^2-1=6x^2-7x-5\)
\(\Leftrightarrow2x^2-7x-4=0\Leftrightarrow\left(x-4\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-\frac{1}{2}\end{matrix}\right.\)
e/ \(x^2-5x+6=0\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
tìm x:
\(\frac{2x+3}{5x+2}=\frac{4x+5}{10x+2}\)