Cho a3-3ab2=19 và b3-3a2b=98. tính E=a2+b2
Gợi ý: bình phướng 2 vế rồi cộng lại
Cho a3 - 3ab2 = 2 ; b3 - 3a2b = -11.
Tính : M = a2 + b2.
Cho a3-3ab2=5 và b3-3a2b=10. Tính S=a2+b2 phần 2018
chứng minh các đẳng thức sau
(a-b)2=a2-2ab+b2
(a-b)(a+b)=a2-b2
(a+b)3=a3+3a2b+3ab2+b3
(a-b)^2=(a-b)(a-b)=a^2-ab-ab+b^2=a^2-2ba+b^2
(a-b)(a+b)=a^2+ab-ab-b^2=a^2-b^2
(a+3)^3=(a+b)^2*(a+b)
=(a^2+2ab+b^2)(a+b)
=a^3+a^2b+2a^2b+2ab^2+b^2a+b^3
=a^3+3a^2b+3ab^2+b^3
Cho a3-3ab2=5 ; b3-3a2b=10
Tính S = 20/6a2+20/6b2
Áp dụng tính chất dãy tỉ số bằng nhau ,ta có :
\(\frac{a_1-1}{100}=\frac{a_2-2}{99}=...=\frac{a_{100}-100}{1}=\frac{a_1+a_2+...+a_{100}-5050}{5050}=\frac{10100-5050}{5050}=\frac{5050}{5050}=1\)
\(\Rightarrow a_1-1=100\)
\(a_2-2=99\)
...
\(a_{100}-100=1\)
\(\Rightarrow a_1=a_2=...=a_{100}=101\)
Cho các số thực dương a 1 , a 2 , a 3 , a 4 , a 5 theo thứ tự lập thành cấp số cộng và các số thực dương b 1 , b 2 , b 3 , b 4 , b 5 theo thứ tự lập thành cấp số nhân. Biết rằng a 1 = b 1 và a 5 = 176 17 b 5 Giá trị nhỏ nhất của biểu thức a 2 + a 3 + a 4 b 2 + b 3 + b 4 bằng
A. 16 17
B. 48 17
C. 32 17
D. 24 17
Cho các số thực dương a 1 , a 2 , a 3 , a 4 , a 5 theo thứ tự lập thành cấp số cộng và các số thực dương b 1 , b 2 , b 3 , b 4 , b 5 theo thứ tự lập thành cấp số nhân. Biết rằng a 1 = b 1 và a 5 = 176 17 b 5 . Giá trị nhỏ nhất của biểu thức a 2 + a 3 + a 4 b 2 + b 3 + b 4 bằng
A. 16 17
B. 48 17
C. 32 17
D. 24 17
Cho dãy số liệu (1) : a1; a2; a3...an-1; an trong đó a1; a2; ..an là các số cho trước có số trung bình cộng là x1
Và cho dãy số liệu (2): a1 - 1; a2; a3...an-1; an+ 1 có số trung bình cộng là x2
Chọn mệnh đề đúng?
A. x1 = x2
B. x1 > x2
C. x1 < x2
D. Không só sánh được
Chọn A.
Dãy số liệu thứ 2 có 2 số liệu khác với dãy số liệu 1 là số đứng ở vị trí đầu tiên và số đứng ở vị trí cuối cùng. Tuy nhiên tổng của số đứng đầu tiên + số đứng ở vị trí cuối cùng không thay đổi. Do đó; số trung bình không thay đổi.