Biết rằng a+b+c=0
Chứng minh (a^2+b^2+c^2)^2=2(a^4+b^4+c^4)
cho a+b+c=0
Chứng minh \(a^4+b^4+c^4\)=2\(\left(ab+ac+bc\right)^2\)
Ta có: \(a+b+c=0\)
\(\Rightarrow\left(a+b+c\right)^2=0\)
\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ac=0\)
Mặt khác: \(a^2\ge0\forall a;b^2\ge0\forall b;c^2\ge0\forall c\)
\(\Rightarrow a^2+b^2+c^2\ge0\)
Suy ra: \(2ab+2bc+2ac=0\)
\(\Rightarrow2\left(ab+bc+ac\right)=0\)
\(\Rightarrow ab+bc+ac=0\Leftrightarrow2\left(ab+bc+ac\right)^2=0\) (1)
Lại có: \(a^4+b^4+c^4\)
\(=\left(a^2+b^2+c^2\right)^2-2\left[\left(ab\right)^2+\left(bc\right)^2+\left(ac\right)^2\right]\)
\(=0-2\left[\left(ab\right)^2+\left(bc\right)^2+\left(ac\right)^2+2\left(ab+bc+ac\right)-2\left(ab+bc+ac\right)\right]\)
\(=-2\left(ab+bc+ac\right)^2-4\left(ab+bc+ac\right)\)
\(=0\) (2)
Từ (1) và (2) \(\Rightarrow a^4+b^4+c^4=2\left(ab+bc+ac\right)^2=0\)
hay \(a^4+b^4+c^4=2\left(ab+ac+bc\right)^2\)
Kiểm tra hộ mình xem có đúng không ạ!
cho a,b,c >0
chứng minh rằng
\(\dfrac{a^2}{\sqrt{b^2+c^2}}+\dfrac{b^2}{\sqrt{a^2+c^2}}+\dfrac{c^2}{\sqrt{a^2+b^2}}\ge\dfrac{a+b+c}{\sqrt{2}}\)
Đặt \(\left(\sqrt{b^2+c^2};\sqrt{c^2+a^2};\sqrt{a^2+b^2}\right)=\left(x;y;z\right)\)
\(\Rightarrow\left\{{}\begin{matrix}a^2=\dfrac{y^2+z^2-x^2}{2}\\b^2=\dfrac{x^2+z^2-y^2}{2}\\c^2=\dfrac{x^2+y^2-z^2}{2}\end{matrix}\right.\)
\(\Rightarrow VT=\dfrac{y^2+z^2-x^2}{2x}+\dfrac{x^2+z^2-y^2}{2y}+\dfrac{x^2+y^2-z^2}{2z}\)
\(VT\ge\dfrac{\left(y+z\right)^2}{4x}+\dfrac{\left(x+z\right)^2}{4y}+\dfrac{\left(x+y\right)^2}{4z}-\dfrac{1}{2}\left(x+y+z\right)\)
\(VT\ge\dfrac{\left(2x+2y+2z\right)^2}{4\left(x+y+z\right)}-\dfrac{1}{2}\left(x+y+z\right)=\dfrac{1}{2}\left(x+y+z\right)\)
\(VT\ge\dfrac{1}{2}\left(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\right)\)
\(VT\ge\dfrac{1}{2}\left(\sqrt{\dfrac{1}{2}\left(a+b\right)^2}+\sqrt{\dfrac{1}{2}\left(b+c\right)^2}+\sqrt{\dfrac{1}{2}\left(c+a\right)^2}\right)\)
\(VT\ge\dfrac{a+b+c}{\sqrt{2}}\) (đpcm)
cho biết a+b+c=0, chứng minh rằng
\(\left(a^2+b^2+c^2\right)^2=2\left(a^4+b^4+c^4\right)\)
chúc bạn học tốt ^^ ( lần trước có làm, h lười đánh lại:P)
Biết rằng a+b+c=0
Chứng minh
(a^2+b^2+c^2)^2=2(a^4+b^4+c^4)
a + b + c = 0
<=> (a + b + c)² = 0
<=> a² + b² + c² + 2(ab + bc + ca) = 0
<=> a² + b² + c² = -2(ab + bc + ca) ------------(1)
Cần chứng minh:
2(a^4 + b^4 + c^4) = (a² + b² + c²)²
<=> 2(a^4 + b^4 + c^4) = a^4 + b^4 + c^4 + 2(a²b² + b²c² + c²a²)
<=> a^4 + b^4 + c^4 = 2(a²b² + b²c² + c²a²)
<=> (a² + b² + c²)² = 4(a²b² + b²c² + c²a²) ---(cộng 2 vế cho 2(a²b² + b²c² + c²a²) )
<=> [-2(ab + bc + ca)]² = 4(a²b² + b²c² + c²a²) ----(do (1))
<=> 4.(a²b² + b²c² + c²a²) + 8.(ab²c + bc²a + a²bc) = 4(a²b² + b²c² + c²a²)
<=> 8.(ab²c + bc²a + a²bc) = 0
<=> 8abc.(a + b + c) = 0
<=> 0 = 0 (đúng), Vì a + b + c = 0
=> Đpcm
mk ko bít đúng ko?? 454655457457574574574579897847346246346346
Từ a+b+c=0 có b+c =-a
=> (b+c)2 = (-a)2 hay b2 + c2 +2bc = a2
hay b2 + c2 -a2 = -2bc
=> (b2 + c2 - a2)2 = (-2bc)2
<=> b4 + c4 + a4 +2b2.c2 - 2a2.b2 - 2a2.c2 = 4b2.c2
<=> a4 + b4 + c4 = 2a2.b2 + 2b2.c2 + 2c2.a2 <=> 2(a4 + b4 + c4) =a4 + b4 + c4 + 2a2.b2 + 2b2.c2 + 2c2.a2
<=> 2(a^4 + b^4 + c^4 ) =(a^2 + b2 + c2)2
1)chứng minh rằng nếu a+b+c=1 thì a^4 +c^4 +b^4 =abc
2) với a,b,c dương chứng minh rằng 2căna +2cănb+2cănc +a^2+b^2+c^2 >= 3(a+b+c)
Chứng minh rằng:
A: a(b-c)(b+c-a)^2+c(a-b)(a+b-c)^2=b(a-c)(a+c-b)^2
B: TÌm x biết :
(2x^2+x-2017)^2+4(x^2-5x-2016)^2=4(2x^2+x-2017)(x^2-5x-2016)
cho cac so a,b,c,d thỏa mãn a^2+b^2+(a+b)^2=c^2+d^2+(c+d)^2 chứng minh rằng a^4+b^4+(a+b)^4=c^4+d^4+(c+d)^4
Cho biết a + b+ c=0.Chứng minh rằng (a2+ b2+c2) 2=2 (a4+b4+c4)
Cho a + b + c = 0 chứng minh rằng a^2 + b^2 + c^2 = 2( a^4 + b^4 + c^4 )
co a+b+c=0 =>b+c=-a
suy ra (b+c)2=(-a)2 hay b2+2bc+c2 =a2
hay b2+c2-a2 =-2bc
Suy ra (b2 + c2 - a2 )2 =( -2bc)2
<=> b4 +c4 +a4 +2b2c2 -2a2b2 -2a2c2 = 4b2c2
<=> a4+b4+c4 =2a2b2+2b2c2+2c2a2
<=> 2(a4+b4+c4) = a4+b4+c4+2a2b2+2b2c2+2c2a2
<=> a2+b2+c2 =2(a4+b4+c4) (dpcm)