tìm giá trị cua biểu thức: S = \(\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}\)
Rút gọn các biểu thức:
\(\frac{\sqrt{\sqrt{7}-\sqrt{3}}-\sqrt{\sqrt{7+\sqrt{3}}}}{\sqrt{\sqrt{7-2}}}\)
Tính giá trị biểu thức:
\(C=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
\(y=\sqrt{\frac{3\sqrt{3}-4}{2\sqrt{3}+1}}-\sqrt{\frac{4+\sqrt{3}}{5-2\sqrt{3}}}-\frac{\sqrt{7+\sqrt{5}}+\sqrt{7-\sqrt{5}}}{\sqrt{7+2\sqrt{4}}}\)
Mọi người giải hộ mình nhé. Tính giá trị biểu thức trên
a) Cho x = \(\frac{\sqrt[3]{10+6\sqrt{3}}\left(\sqrt{3}-1\right)}{\sqrt{6+2\sqrt{5}}-\sqrt{5}}\)Tính giá trị biểu thức: A = \(\left(x^3-4x+1\right)^{2018}\)
b) Cho x = \(\sqrt[3]{7+5\sqrt{2}}-\frac{1}{\sqrt[3]{7+5\sqrt{2}}}\)Tính giá trị biểu thức: B = \(\left(x^3+3x-14\right)^{2018}\)
ai nay dung kinh nghiem la chinh
cau a)
ta thay \(10+6\sqrt{3}=\left(1+\sqrt{3}\right)^3\)
\(6+2\sqrt{5}=\left(1+\sqrt{5}\right)^2\)
khi do \(x=\frac{\sqrt[3]{\left(\sqrt{3}+1\right)^3}\left(\sqrt{3}-1\right)}{\sqrt{\left(1+\sqrt{5}\right)^2}-\sqrt{5}}\)
\(x=\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}{1+\sqrt{5}-\sqrt{5}}\)
\(x=\frac{3-1}{1}=2\)
suy ra
x^3-4x+1=1
A=1^2018
A=1
b)
ta thay
\(7+5\sqrt{2}=\left(1+\sqrt{2}\right)^3\)
khi do
\(x=\sqrt[3]{\left(1+\sqrt{2}\right)^3}-\frac{1}{\sqrt[3]{\left(1+\sqrt{2}\right)^3}}\)
\(x=1+\sqrt{2}-\frac{1}{1+\sqrt{2}}=\frac{\left(1+\sqrt{2}\right)^2-1}{1+\sqrt{2}}=\frac{2+2\sqrt{2}}{1+\sqrt{2}}\)
x=2
thay vao
x^3+3x-14=0
B=0^2018
B=0
cho x= \(\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}\)
Tính giá trị của biểu thức f(x)= x^3+3x
\(x=\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}\Rightarrow x^3=5\sqrt{2}+7-\left(5\sqrt{2}-7\right)-3\sqrt[3]{\left(5\sqrt{2}\right)^2-7^2}.x\)
\(=14-3.\sqrt[3]{50-49}.x=14-3x\)
\(\Rightarrow x^3=14-3x\Rightarrow x^3+3x=14\)
Cho biểu thức A = \(\dfrac{\sqrt{x}+2}{\sqrt{x}-3};B=\dfrac{\sqrt{x}+5}{\sqrt{x}+1}+\dfrac{\sqrt{x}-7}{1-x}\) với x ≥ 0;x ≠ 1;x ≠ 9
a, Tính giá trị biểu thức A khi x = 16
b,Chứng minh rằng: B = \(\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\)
c, Tìm các giá trị x để \(\dfrac{4A}{A}\le\dfrac{x}{\sqrt{x}-3}\)
\(a,x=16\Rightarrow A=\dfrac{\sqrt{16}+2}{\sqrt{16}-3}=\dfrac{4+2}{4-3}=6\)
\(b,B=\dfrac{\sqrt{x}+5}{\sqrt{x}+1}+\dfrac{\sqrt{x}-7}{1-x}\left(dk:x\ge0,x\ne1,x\ne9\right)\\ =\dfrac{\sqrt{x}+5}{\sqrt{x}+1}-\dfrac{\sqrt{x}-7}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ =\dfrac{\left(\sqrt{x}+5\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-7\right)}{x-1}\\ =\dfrac{x+4\sqrt{x}-5-\sqrt{x}+7}{x-1}\\ =\dfrac{x+3\sqrt{x}+2}{x-1}\\ =\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ =\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\left(dpcm\right)\)
\(c,\dfrac{4A}{A}\le\dfrac{x}{\sqrt{x}-3}\Leftrightarrow\dfrac{4\left(\sqrt{x}+2\right)}{\sqrt{x}-3}:\dfrac{\sqrt{x}+2}{\sqrt{x}-3}\le\dfrac{x}{\sqrt{x}-3}\)
\(\Leftrightarrow\dfrac{4\left(\sqrt{x}+2\right)}{\sqrt{x}-3}.\dfrac{\sqrt{x}-3}{\sqrt{x}+2}\le\dfrac{x}{\sqrt{x}-3}\)
\(\Leftrightarrow4-\dfrac{x}{\sqrt{x}-3}\le0\)
\(\Leftrightarrow\dfrac{4\sqrt{x}-12-x}{\sqrt{x}-3}\le0\)
\(\Leftrightarrow\) Pt vô nghiệm
Vậy không có giá trị x thỏa yêu cầu đề bài.
Tính giá trị của biểu thức:
\(\sqrt{2+\sqrt{3+\sqrt[3]{4+5\sqrt[5]{6+7\sqrt[7]{8+9\sqrt[9]{10+11\sqrt[11]{12}}}}}}}\)
Giá trị biểu thức A = [ \(\sqrt{64}\) + 2.\(\sqrt{(-3)^{2}}\)- 7.\(\sqrt{1,69}\) + 3.\(\sqrt{\dfrac{25}{16}}\)] : (5.\(\sqrt{\dfrac{2}{3}})^{2}\)
Tính A. Các bạn giúp mk với ạ.
\(A=\left(8+2\cdot3-7\cdot\dfrac{13}{10}+3\cdot\dfrac{5}{4}\right):\left(\dfrac{5\sqrt{6}}{3}\right)^2\\ A=\left(14-\dfrac{91}{10}+\dfrac{15}{4}\right):\dfrac{50}{3}\\ A=\dfrac{173}{20}\cdot\dfrac{3}{50}=\dfrac{519}{1000}\)
cho A=(\sqrt(x))/(\sqrt(x-2))+(x-3\sqrt(x+8))/(x-7\sqrt(x+10))-(\sqrt(x-1))/(\sqrt(x-5))
rút gọn A
tìm giá trị nguyên của x để biểu thức A nguyên
\(A=\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{x-3\sqrt{x}+8}{x-7\sqrt{x}+10}-\dfrac{\sqrt{x}-1}{\sqrt{x}-5}\left(x\ge0,x\ne\left\{4;25\right\}\right)\\ =\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{x-3\sqrt{x}+8}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-5\right)}-\dfrac{\sqrt{x}-1}{\sqrt{x}-5}\\ =\dfrac{\sqrt{x}\left(\sqrt{x}-5\right)+x-3\sqrt{x}+8-\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-5\right)}\)
\(=\dfrac{x-5\sqrt{x}+x-3\sqrt{x}+8-\left(x-3\sqrt{x}+2\right)}{\left(\sqrt{x}-5\right)\left(\sqrt{x}-2\right)}\\ =\dfrac{x-5\sqrt{x}+6}{\left(\sqrt{x}-5\right)\left(\sqrt{x}-2\right)}=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-5\right)}\\ =\dfrac{\sqrt{x}-3}{\sqrt{x}-5}\)
Để A nguyên : \(\dfrac{\sqrt{x}-3}{\sqrt{x}-5}=1+\dfrac{2}{\sqrt{x}-5}\in Z\)
\(=>\dfrac{2}{\sqrt{x}-5}\in Z=>\sqrt{x}-5\in\left\{1;-1;2;-2\right\}\)
\(=>\sqrt{x}\in\left\{6;4;7;3\right\}\\ =>x\in\left\{36;16;49;9\right\}\) (TMDK)
Cho \(\sqrt{\dfrac{7+3\sqrt{5}}{2}}=a+b\sqrt{5}\) (a,b ∈ R). Giá trị của biểu thức a + b là:
Ta có:
\(\sqrt{\dfrac{7+3\sqrt{5}}{2}}\)
\(=\sqrt{\dfrac{2\cdot\left(7+3\sqrt{5}\right)}{2\cdot2}}\)
\(=\sqrt{\dfrac{14+6\sqrt{5}}{4}}\)
\(=\sqrt{\dfrac{\left(\sqrt{5}\right)^2+2\cdot\sqrt{5}\cdot3-3^2}{2^2}}\)
\(=\sqrt{\dfrac{\left(\sqrt{5}+3\right)^2}{2^2}}\)
\(=\dfrac{3+\sqrt{5}}{2}\)
Mà: \(\dfrac{3+\sqrt{5}}{2}=a+b\sqrt{5}\)
Nên: \(\dfrac{3+\sqrt{5}}{2}=\dfrac{3}{2}+\dfrac{\sqrt{5}}{2}=\dfrac{3}{2}+\dfrac{1}{2}\sqrt{5}\)
Vậy: \(a=\dfrac{3}{2};b=\dfrac{1}{2}\)
\(\Rightarrow a+b=\dfrac{3}{2}+\dfrac{1}{2}=\dfrac{4}{2}=2\)
\(\sqrt{\dfrac{7+3\sqrt{5}}{2}}=\sqrt{\dfrac{14+6\sqrt{5}}{4}}=\sqrt{\left(\dfrac{3+\sqrt{5}}{2}\right)^2}\)
\(=\dfrac{3+\sqrt{5}}{2}\)
=>a=3/2; b=1/2
a+b=3/2+1/2=2