Cho ΔABC vuông cân tại A. Đường cao AH và đường phân giác BE cắt nhau tại I.
a) Biết AB = 3cm. Tính AE?
b) Chứng minh ΔAIE cân
c) Chứng minh rằng: CE = 2.HI
Bài 1. Cho ΔABC vuông góc tại A, đường cao AH (H ∈ BC) và phân giác BE của ABC (E ∈ AC) cắt nhau tại I . Chứng minh rằng:
a) ΔABE ΔHBI.
b) ΔBHA ΔBAC. Rồi suy ra AB2 = BH. BC
c) ΔAIE cân.
freqché tonery élooin shçç
arzàyu radio rubsz tqsd
çàèé sonuhy,lafneq toin
çàea & reszao and shoppea
reach 123 tusqi yuoyuè
(reachèst)
Cho tam giác ABC cân tại A . Các đường phân giác của BD và CE cắt nhau tại I.a) Chứng minh: AD=AE. b) Chứng minh: tam giác BIE= tam giác CID. c) Chứng minh: tam giác BIC cân. d) Cho biết AB=AC=5cm, BC=6cm. Gọi H là giao điểm của AI với BC. Tính AH
Cho ▲ABC vuông góc tại A có AB=15 cm AC=20 cm,đường cao AH
a)Tính BC và AH
b) Phân giác góc HAC cắt BC tại D. Chứng minh ▲ABD cân
c)Trên cạnh AC,lấy E sao cho AE=AH. Chứng minh CE nhân CA=CD nhân CH
a) Áp dụng định lí Pytago vào \(\Delta\)ABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=15^2+20^2=625\)
hay BC=25(cm)
Vậy: BC=25cm
Bài 1 Cho tam giác DEF cân tại D với đường trung tuyến DI
a/ Chứng minh :∆ DEI = ∆DFI
b/ Các góc DIE và góc DIF là những góc gì ?
c/ Biết DI = 12cm , EF = 10cm . Hãy tính độ dài cạnh DE.
Bài 2
Cho tam giác ABC vuông ở A, có ∠C = 300 , AHBC (H∈BC). Trên đoạn HC lấy điểm D sao cho HD = HB. Từ C kẻ CE ⊥ AD. Chứng minh :
a)Tam giác ABD là tam giác đều .
b)AH = CE.
c)EH // AC .
Bài 3 Cho ΔABC biết AB = 3cm, AC = 4cm, BC = 5cm. Trên tia đối của tia AC lấy điểm D sao cho AD =AC
a. Chứng minh tam giác ABC vuông
b) Chứng minh ΔBCD cân
c)Gọi E là trung điểm của BD, CE cắt AB tại O. Tính OA, OC
Bài 4:
Cho ABC cân tại A, vẽ AH vuông góc với BC tại H. Biết AB=5cm, BC= 6cm.
a) Chứng minh BH =HC.
b) Tính độ dài BH, AH.
c) Gọi G là trọng tâm của tam giác ABC. Chứng minh rằng A, G, H thẳng hàng.
d) Chứng minh ∠ABG = ∠ACG
Bài 5. (3,5 điểm)
Cho DABC có góc C = 900 ; BC = 3cm; CA = 4cm. Tia phân giác BK của góc ABC (K∈ CA); từ K kẻ KE ⊥ AB tại E.
a) Tính AB.
b) Chứng minh BC = BE.
c) Tia BC cắt tia EK tại M. So sánh KM và KE.
d) Chứng minh CE // MA
Bài 6:
Cho ΔABC vuông tại A, đường phân giác BE. Kẻ EH vuông góc với BC (H ∈ BC). Gọi K là giao điểm của AB và HE. Chứng minh rằng:
a) ΔABE = ΔHBE
b) BE là đường trung trực của đoạn thẳng AH.
c) EK = EC.
d) AE < EC.
Bài 7
Cho ABC cân tại A có AB = 5cm, BC = 6cm. Từ A kẻ đường vuông góc AH đến BC.
a. Chứng minh: BH = HC.
b. Tính độ dài đoạn AH.
c. Gọi G là trọng tâm Trên tia AG lấy điểm D sao cho AG = GD. Tia CG cắt AB tại F. Chứng minh: BD = 2/3CF
d) Chứng minh: DB + DG > AB.
Bài 8
Cho tam giác ABC vuông tại A. Trên tia đối của tia AB lấy điểm K sao cho BK = BC. Vẽ KH vuông góc với BC tại H và cắt AC tại E.
a) Vẽ hình và ghi GT – KL ?
b) KH = AC
c) BE là tia phân giác của góc ABC ?
d) AE < EC ?
Bài 9
Cho ΔABC cân tại A, hai trung tuyến BM, CN cắt nhau tại K. Chứng minh :
a) ΔBNC = ΔCMB
b) ΔBKC cân tại K
c) MN // BC
Bài 2 ( 3 điểm): Cho ΔABC nhọn, các đường cao BD CE , cắt nhau tại H .Đường
vuông góc với AB tại B và đường vuông góc với AC tại C cắt nhau tại K .
a) Chứng minh AH BC .
b) Chứng minh tứ giác BHCK là hình bình hành.
Bài 2 ( 3 điểm): Cho ΔABC nhọn, các đường cao BD CE , cắt nhau tại H .Đường
vuông góc với AB tại B và đường vuông góc với AC tại C cắt nhau tại K .
a) Chứng minh AH vuông góc BC
b) Chứng minh tứ giác BHCK là hình bình hành
Bài 2 ( 3 điểm): Cho ΔABC nhọn, các đường cao BD CE , cắt nhau tại H .Đường
vuông góc với AB tại B và đường vuông góc với AC tại C cắt nhau tại K .
a) Chứng minh AH vuông góc BC
b) Chứng minh tứ giác BHCK là hình bình hành.
Bài 4 : Cho tam giác ABC vuông tại A ( AB<AC), đường cao AH. giác HAC cắt BC tại E. Vẽ EK vuông góc với AC tại K. Tia phân a) Chứng minh rằng: AAHE = AAKE và AH = AK b) KH cắt AE tại I. Chứng minh rằng: AE I HK từ đó so sánh KE và HI. c) AH cắt KE tại D. Chứng minh rằng: AE L CD. d) Tia phân giác góc ABC cắt AE tại M. Chứng minh rằng: BM // CD
a: Xét ΔAHE vuông tại H và ΔAKE vuông tại K có
AE chung
\(\widehat{HAE}=\widehat{KAE}\)
Do đó: ΔAHE=ΔAKE
Suy ra: AH=AK
b: Ta có: AH=AK
EH=EK
Do đó: AE là đường trung trực của HK
hay AE⊥HK
mà ΔAHK cân tại A
nên I là trung điểm của HK
=>IK=IH
mà IK<KE
nên IH<KE
cho tam giác abc vuông tại a . biết ab = 3cm, bc=5cm.
a) tính ac?
b) kẻ phân giác bd. kẻ ah vuông góc bd tại h. kéo dài ah cắt bc tại e. chứng minh tam giác abh = tam giác ebh.
c) chứng minh rằng de vuông góc với bc.
d)hai đường thẳng ab và de cắt nhau tại k. chứng minh rằng tam giác bck cân
a) Áp dụng Pytago dễ dàng tính được AC=4
b) Xét hai tam giác vuông ABD và HBD có
BD cạnh chung
góc ABD = góc HBD (BD là phân giác góc B)
Nên hai tam giác trên bằng nhau (cạnh huyền - góc nhọn)
Suy ra AB = BH
AD = DH
Suy ra BD là trung trực của AH (định lý 2)
c) Ý bạn là E là giao điểm của AH và BD?
Hay E là giao điểm của DH và AB?