Cho x>y và xy=15. Tìm GTNN của biểu thức Q = (x^2 + 1,2xy + y^2) / (x-y)
cho x>y và xy=5 tìm giá trị nhỏ nhất của biểu thức \(Q=\frac{x^2+1,2xy+y^2}{x-y}\)
Cho x > y và xy = 5, tìm GTNN của \(\dfrac{x^2+1,2xy+y^2}{x-y}\)
Cho x > y và xy = 5 . Tìm GTNN của A = \(\dfrac{x^2+1,2xy+y^2}{x-y}\)
\(A=\frac{x^2+1,2xy+y^2}{x-y}=\frac{x^2-2xy+y^2+3,2xy}{x-y}=\frac{\left(x-y\right)^2+16}{x-y}\ge\frac{2\cdot4\left(x-y\right)}{x-y}=8\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}x-y=4\\xy=5\end{matrix}\right.\\ \Leftrightarrow x\left(x-4\right)=5\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=5\\y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x=-1\\y=-5\end{matrix}\right.\end{matrix}\right.\)
Vậy...........
Cho x và y là hai số dương thỏa mãn: x+y=2. Tìm GTNN của biểu thức: Q=\(\dfrac{2}{x^2+y^2}+\dfrac{3}{xy}\)
Ta có: \(Q=\dfrac{2}{x^2+y^2}+\dfrac{3}{xy}=\dfrac{2}{x^2+y^2}+\dfrac{6}{2xy}=\dfrac{2}{x^2+y^2}+\dfrac{2}{2xy}+\dfrac{4}{2xy}\)
Áp dụng BĐT phụ: \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)
\(\Rightarrow2\left(\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}\right)\ge2\left(\dfrac{4}{x^2+2xy+y^2}\right)=2\left[\dfrac{4}{\left(x+y\right)^2}\right]=2.\dfrac{4}{4}=2\)
Dấu "=" xảy ra khi x=y=1
Áp dụng BĐT phụ: \(ab\le\dfrac{\left(a+b\right)^2}{4}\)
\(\Rightarrow xy\le\dfrac{\left(x+y\right)^2}{4}=\dfrac{2^2}{4}=1\)
Dấu"=" xảy ra khi x=y=1
\(\Rightarrow2xy\le2.1=2\)
\(\Rightarrow\dfrac{4}{2xy}\ge\dfrac{4}{2}=2\)
\(\Rightarrow Q=\dfrac{2}{x^2+y^2}+\dfrac{2}{2xy}+\dfrac{4}{2xy}=\dfrac{2}{x^2+y^2}+\dfrac{3}{xy}\ge2+2=4\)
Dấu"=" xảy ra khi x=y=1
1) cho x>0,y>0 thỏa mãn x+y=1.tìm GTNN của biểu thức P= 1/xy+2/x^2+y^2
2)cho x>0,y>0 và x+y=1.tìm GTNN của M=3/xy+2/x^2+y^2
3)tìm GTNN và GTLN của
N= 2x+1/x^2+2
Q= 2x^2-2x+9/x^2+2x+5
R=2(x^2+x+1)/x^2+1
Với x,y là hai số thực dương: x+y+xy=15, tìm gtnn của biểu thức P=x^2+y^2
\(P=x^2+y^2=\left(x+y\right)^2-2xy=\left(15-xy\right)^2-2xy=\left(xy\right)^2-32xy+225=p^2-32p+225.\)
s+p = 15 ; s2 -4p>/ 0 => p</ 3
P min = 138 khi p = 3 ; s = 12
bạn gải thích rõ bước cuối được không bạn từ bước s+p=15;s2-4p>/0
Cho x>0,y>0 và x+y=1.Tìm gtnn của biểu thức
Q= 1/x2+y2 + 2/xy + 4xy +2016
\(Q=\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy+2016=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{4xy}+4xy+\frac{5}{4xy}+2016\)
Áp dụng bất đẳng thức \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\). Dấu "=" khi a=b (bạn tự chứng minh)
\(\frac{1}{x^2+y^2}+\frac{1}{2xy}\ge\frac{4}{\left(x+y\right)^2}=4\)
Vì x>0, y>0 nên xy>0
Áp dụng bất đẳng thức Cô si cho 2 số dương
\(\frac{1}{4xy}+4xy\ge2\sqrt{\frac{1}{4xy}.4xy}=2\)
Ta có: \(1=x+y\ge2\sqrt{xy}\Leftrightarrow\left(x+y\right)^2\ge4xy\Leftrightarrow xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\Rightarrow\frac{5}{4xy}\ge5\)
Dấu "=" khi \(\hept{\begin{cases}x^2+y^2=2xy\\\frac{1}{4xy}=4xy\\x=y\end{cases}\Rightarrow x=y=\frac{1}{2}}\)
\(\Rightarrow Q\ge4+2+5+2016=2027\)
Vậy \(minQ=2027\)khi \(x=y=\frac{1}{2}\)
tìm gtnn của biểu thức p=x2+y2 biết x+y+xy=15
ta có x + y + xy = 15 => x + y = 15 - xy => \(\left(x+y\right)^2=\left(15-xy\right)^2\)
\(P=x^2+y^2=\left(x+y\right)^2-2xy=\left(15-xy\right)^2-2xy\)
\(=\left(xy\right)^2-32xy+225=\left(xy\right)^2-32xy+256-31\)
\(=\left(xy-16\right)^2-31\ge-31\)
Xin lỗi hôm qua mình giải sải. giờ mình xin đính chính lại nhé
Ta có : x + y + xy = 15 => x + y + xy + 1 = 16 => ( x + 1 ). ( y + 1 ) = 16
=> \(\left(x+1\right).\left(y+1\right)\le\frac{\left(x+1+y+1\right)^2}{4}.\)
=> \(\left(x+y+2\right)^2\ge64\)
=>\(x+y+2\ge8\)
=>\(x+y\ge6\)
Ta có \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}=\frac{6^2}{2}=18\)
=> \(P\ge18.\)
Vậy \(P_{Min}=18\)Khi x = y = 3
Cho \(x;y>0\) và \(x+y\le2\).Tìm GTNN của biểu thức :
\(P=\frac{20}{x^2+y^2}+\frac{11}{xy}\)