Cho x > y và xy = 5 . Tìm GTNN của A = \(\dfrac{x^2+1,2xy+y^2}{x-y}\)
cho x,y>0. tìm GTNN của \(A=\dfrac{x^2+y^2}{xy}+\dfrac{\sqrt{xy}}{x+y}\)
cho x,y>0. tìm GTNN của \(A=\dfrac{\left(x+y+1\right)^2}{xy+x+y}+\dfrac{xy+x+y}{\left(x+y+1\right)^2}\)
cho x,y thỏa mãn 1≤y≤2 và xy+2≥2y. tìm GTNN của \(M=\dfrac{x^2+4}{y^2+1}\)
cho 2 số dương x,y sao cho x+y=1. Tìm GTNN của biểu thức:
P=\(\dfrac{1}{xy}+\dfrac{1}{x^{2}+y^{2}}\)
Cho hai số dương x,y thay đổi thỏa mãn xy=2. Tìm GTNN của biểu thức M=\(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{3}{2x+y}\)
cho x,y,z thỏa mãn \(x+y+z\le\dfrac{3}{2}\) . tìm GTNN của \(P=\dfrac{x\left(yz+1\right)^2}{z^2\left(xz+1\right)}+\dfrac{y\left(xz+1\right)^2}{y^2\left(xy+1\right)}+\dfrac{z\left(xy+1\right)^2}{x^2\left(yz+1\right)}\)
Cho ba số thực dương x,y,z thỏa mãn x+y+z = 2. Tìm GTNN của biểu thức:
\(P=\dfrac{1}{xy}+\dfrac{1}{yz}\)
Cho x, y, z >1 và x+y+z = xyz. tìm GTNN của B=\(\dfrac{y-2}{x^2}+\dfrac{z-2}{y^2}+\dfrac{x-2}{z^2}\)