cho tam giác abc có đường trung tuyến bm và cn cắt nhau tại g, với bm=4,5cm ;cn=6 cm,bc=5cm.
a, tính bg,cg,gm,gn
b, chứng minh tam giác gbc là tam giác vuông
c, tính ag
d,tính diện tích tam giác abc
e,tính chu vi tam giác abc
Cho tam giác ABC có hai đường trung tuyến BM và CN cắt nhau tại G. Biết BM = CN. Chứng minh A G ⊥ B C .
Sao vi phạm vậy bạn " Lê Đông Quân "
tnlvprvth học lớp cao
cho tam giác abc có bc = 12, hai đường trung tuyến bm và cn cắt nhau tại g. chứng minh rằng: bm + cn > 18
BM = 3/2 BG, CN = 3/2 CG
Ta có BM + CN = 3/2 (BG + CG) > 3/2. BC = 3/2 x 12 = 18
Cho tam giác ABC cân tại A, hai đường trung tuyến BM và CN cắt nhau tại G. Chứng minh:
a) BM = CN; b) \(\Delta GBC\) cân tại G.
a) Tam giác ABC cân tại A nên AB = AC. M, N lần lượt là trung điểm của cạnh AC, AB nên AM = AN.
Xét tam giác ABM và tam giác ACN có: AM = AN; \(\widehat A\)chung; AB = AC.
Vậy \(\Delta ABM = \Delta ACN\)(c.g.c) hay BM = CN.
b) Xét tam giác ABC có G là giao điểm của hai đường trung tuyến BM và CN nên G là trọng tâm tam giác ABC. Do đó:
\(GB = \dfrac{2}{3}BM;GC = \dfrac{2}{3}CN\). Mà BM = CN nên GB = GC.
Vậy tam giác GBC cân tại G.
Do G là trọng tâm tam giác nên ta có :
\(\hept{\begin{cases}CG=\frac{2}{3}CN\\BG=\frac{2}{3}BM\end{cases}}\Rightarrow CG>BG\Rightarrow\widehat{GBC}>\widehat{GCB}\)
cho tam giác ABC, hai đường trung tuyến BM và CN cắt nhau tại G. Biết BC =10cm, BM =12cm, CN =9cm.Tính diện tíchtam giác ABC và diện tích tứ giác BNMC
Cho tam giác ABC cân tại A , các đường trung tuyến BM và CN cắt nhau tại G
Chứng minh tam giác ABC = tam giác ACN , từ đó suy ra BM=CN
Xét ΔABM và ΔACN có
AB=AC
góc BAM chung
AM=AN
=>ΔABM=ΔACN
=>BM=CN
Mình xin phép sửa đề:
Cho tam giác ABC cân tại A , các đường trung tuyến BM và CN cắt nhau tại G
Chứng minh tam giác ABN = tam giác ACN , từ đó suy ra BM=CN
`------`
\(\text{GT | AB = AC, }\widehat{\text{B}}=\widehat{\text{C}}\)
\(\text{CM | BM = CN}\)
\(\text{BM là đường trung tuyến}\)
`->`\(\text{MA = MC (1)}\)
\(\text{CN là đường trung tuyến}\)
`->`\(\text{NA = NB (2)}\)
`\Delta ABC` cân tại A
`->`\(\widehat{\text{B}}=\widehat{\text{C}}\text{, AB = AC (3)}\)
Từ \(\left(1\right),\left(2\right),\left(3\right)\)
`->`\(\text{NA = NB = MA = MC}\)
Xét `\Delta ABM` và `\Delta ACN`:
\(\left\{{}\begin{matrix}\text{BM = CN}\\\widehat{\text{B}}=\widehat{\text{C}}\\\text{BC chung}\end{matrix}\right.\)
`=> \Delta ABM = \Delta ACN (c-g-c)`
`->`\(\text{BM = CN (2 cạnh tương ứng).}\)
Cho tam giác ABC, các đường trung tuyến BM và CN cắt nhau ở G. Gọi H là trung điểm của GB, K là trung điểm của GC
cho tam giác ABC, các đường trung tuyến BM và CN cắt nhau ở G. Gọi H là trung điểm của GB, K là trung điểm của GC.
a,cho BC=10cm.Tính MN
b, Chứng minh MNHK là hình bình hành
a: Xét ΔABC có
M là trung điểm của AC
N là trung điểm của AB
Do đó: MN là đường trung bình của ΔABC
Suy ra: \(MN=\dfrac{BC}{2}=5\left(cm\right)\)
1)Cho tam giác ABC, có 2 đường trung tuyến BM và CN cắt nhau tại G. Chứng minh: BM+ CN > 3232BC
2)Cho tam giác ABC, D là trung điểm AC. Trên BD lấy E sao cho BE=2ED. F thuộc tia đối của tia DE sao cho BF=2BE. K là trung điểm CF,G là giao điểm EK và AC. Chứng minh
a) G là trọng tâm tam giác EFC
b) Tính GEGKGEGK,GCDC
1:
Xét ΔBAC có
BM,CN là trung tuyến
BM cắt CN tại G
=>G là trọng tâm
=>BG=2/3BM và CG=2/3CN
BG+CG>BC
=>2/3BM+2/3CN>BC
=>2/3(BM+CN)>BC
=>BM+CN>3/2BC
2:
BF=2BE
=>EF=BE
=>EF=2ED
=>D là trung điểm của EF
Xét ΔFEC có
CD,EK là trung tuyến
CD cắt EK tại G
=>G là trọng tâm
b: G là trọng tâm của ΔFEC
=>GE/GK=1/2 và GC/DC=2