a: Xét ΔABC có
M là trung điểm của AC
N là trung điểm của AB
Do đó: MN là đường trung bình của ΔABC
Suy ra: \(MN=\dfrac{BC}{2}=5\left(cm\right)\)
a: Xét ΔABC có
M là trung điểm của AC
N là trung điểm của AB
Do đó: MN là đường trung bình của ΔABC
Suy ra: \(MN=\dfrac{BC}{2}=5\left(cm\right)\)
cho tam giác ABC, các đường trung tuyến BM và CN cắt nhau ở G. Gọi H là trung điểm của GB, K là trung điểm của GC.
a) CMR tứ giác MNHK là hình bình hành
b) Tam giác ABC có điều kiện gì thì MNKH là hình chữ nhật
Cho tam giác ABC. Các đường trung tuyến BM và CN cắt nhau tại I. Gọi H là trung điểm của IB, K là trung điểm của IC.
1/ Chứng minh tứ giác MNHK là hình bình hành
2/ Nếu các đường trung tuyến BM và CN vuông góc với nhau thì tứ giác MNHK là hình gì?
Cho tam giác ABC có hai đường trung tuyến BM và CN cắt nhau ở G. Gọi E, F là trung điểm của GB và GC. Chứng minh tứ giác MNEF là hình bình hành.
Cho tam giác ABC, các đường trung tuyến BM và CN cắt nhau tại I. Gọi H là trung điểm của IB, K là trung điểm của IC.
a) Chứng minh tứ giác MNHK là hình bình hành
b) Nếu các đường trung tuyến BM và CN vuông góc vời nhau thì tứ giác MNHK là hình gì?
c) Tam giác ABC có điều kiện gì thì tứ giác MNHK là hình chữ nhật?
d) Tam giác ABC có điều kiện gì thì tứ giác MNHK là hình vuông?
Cho tam giác ABC, các đường trung tuyến BD, CE cắt nhau ở G. Gọi H là trung điểm của GB, K là trung điểm của GC. Chứng minh rằng tứ giác DEHK là hình bình hành.
Cho tam giác ABC, các đường trung tuyến BD, CE cắt nhau ở G. Gọi H là trung điểm của GB, K là trung điểm của GC. Nếu các đường trung tuyến BD và CE vuông góc với nhau thì tứ giác DEHK là hình gì?
Cho tam giác ABC các đường trung tuyến BM, CN cắt nhau tại G. K là điểm trên BC, đường thẳng qua K song song với CN cắt AB ở D, đường thẳng qua K song song với BM cắt AC ở E. Gọi I là giao điểm của KG và DE. CM: I là trung điểm của DE
Cho tam giác ABC, đường trung tuyến BM và CN cắt nhau tại G. Gọi D, E là trung điểm của GB, GC. Chứng minh MN // DE và ND // ME