x-9=2x-7
Ta có: \(\left(2x+3\right)\left(2x+1\right)-\left(2x+5\right)\left(2x+7\right)=1-\left(6x^2+9x-9\right)\)
\(\Leftrightarrow4x^2+2x+6x+3-\left(4x^2+14x+10x+35\right)=1-6x^2-9x+9\)
\(\Leftrightarrow4x^2+8x+3-4x^2-24x-35-1+6x^2+9x-9=0\)
\(\Leftrightarrow6x^2-7x-42=0\)
\(\Delta=49-4\cdot6\cdot\left(-42\right)=1057\)
Vì \(\Delta>0\) nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{7-\sqrt{1057}}{12}\\x_2=\dfrac{7+\sqrt{1057}}{12}\end{matrix}\right.\)
Vậy: \(S=\left\{\dfrac{7-\sqrt{1057}}{12};\dfrac{7+\sqrt{1057}}{12}\right\}\)
5)(x+7+1) chia hết cho (x+7)
6)(x+8) chia hết (x+7)
7(2x+14+2) chia hết (x+7)
8(2x+16) chia hết (x+7)
9) (x-5+1) chia hết (x-5)
10) (2x-9) chia hết (x-5)
5) Ta có ( x + 7 + 1 ) chia hết cho ( x+7 )
=> có biểu thức A=(x+7+1) : (x+7)
A= 1- 7 chia hết [(1-7)+ 7]
=> x = (1-7) : [(-6) + 7]
=> x= (-6) : 1
=> x = -6
a) 5(x-2)(x+3)=1
b) 7(x-2024)2 = 23- y2
c) |x2+ 2x| + |y2- 9|= 0
d) 2x+ 2x+1+2x+2+2x+3=120
e) ( x- 7 )x+1- (x - 7)x+11=0
f) 25 - y2= 8(x 2012)2
a: \(5^{\left(x-2\right)\left(x+3\right)}=1\)
=>\(\left(x-2\right)\left(x+3\right)=0\)
=>\(\left[{}\begin{matrix}x-2=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
c: \(\left|x^2+2x\right|+\left|y^2-9\right|=0\)
mà \(\left\{{}\begin{matrix}\left|x^2+2x\right|>=0\forall x\\\left|y^2-9\right|>=0\forall y\end{matrix}\right.\)
nên \(\left\{{}\begin{matrix}x^2+2x=0\\y^2-9=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\left(x+2\right)=0\\\left(y-3\right)\left(y+3\right)=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x\in\left\{0;-2\right\}\\y\in\left\{3;-3\right\}\end{matrix}\right.\)
d: \(2^x+2^{x+1}+2^{x+2}+2^{x+3}=120\)
=>\(2^x\left(1+2+2^2+2^3\right)=120\)
=>\(2^x\cdot15=120\)
=>\(2^x=8\)
=>x=3
e: \(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)
=>\(\left(x-7\right)^{x+11}-\left(x-7\right)^{x+1}=0\)
=>\(\left(x-7\right)^{x+1}\left[\left(x-7\right)^{10}-1\right]=0\)
=>\(\left[{}\begin{matrix}x-7=0\\x-7=1\\x-7=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=8\\x=6\end{matrix}\right.\)
a,( x - 29 ) - ( 17 - 38 ) = -9
b, ( x + 5) + ( x - 9 ) = x + 2
c, ( 27 - x ) + ( 15 + x ) = x- 24
d, |2x - 7|- 9 =20
e, x^2 - 2x + 4 = -2x + 7
g, ( x + 1) + (x + 3) + ( x + 5 +...+ ( x + 99) = 0
a,( x - 29 ) - ( 17 - 38 ) = -9
( x - 29 ) + 21 = - 9
x - 29 = - 9 - 21
x - 29 = - 30
x = -30 + 29
x = -1
c, ( 27 - x ) + ( 15 + x ) = - 24
27 - x + 15 + x = -24
- x + x = -24-27-15
Vô lí vì 0 ko bằng -66
Vậy \(x\in\varnothing\)
d, |2x - 7|- 9 =20
|2x-7|=11
* 2x-7=11 * 2x-7=-11
2x=11+7 2x=-11+7
2x=18 2x=-4
x=18:2 x=-4:2
x=9 x=-2
Vậy x=9 hoặc x=-2
b, ( x + 5) + ( x - 9 ) = x + 2
b)(x+5)+(x-9)=x+2
x+5+x-9=x+2
x+x-x=2-5+9
x=6
Vậy x=6
a)(2x+7)^2=9(x+2)^2
b)(x+2)^2=9(x^2-4x+4)
c)4(2x+7)^2-9(x+3)^2=O
d)(5x^2-2x+10)^2=(3x^2+10x-8)^2
1) (x+6)(3x-1)+x+6=0
2) (x+4)(5x+9)-x-4=0
3)(1-x)(5x+3)÷(3x-7)(x-1)
4)2x (2x-3)=(3-2x)(2-5x)
5)(2x-7)^2-6(2x-7)(x-3)=0
6)(x-2)(x+1)=x^2-4
7) x^2-5x+6=0
8)2x^3+6x^2=x^2+3x
9)(2x+5)^2=(x+2)^2
1) (x+6)(3x-1)+x+6=0
⇔(x+6)(3x-1)+(x+6)=0
⇔(x+6)(3x-1+1)=0
⇔3x(x+6)=0
2) (x+4)(5x+9)-x-4=0
⇔(x+4)(5x+9)-(x+4)=0
⇔(x+4)(5x+9-1)=0
⇔(x+4)(5x+8)=0
3)(1-x)(5x+3)÷(3x-7)(x-1)
=\(\frac{\left(1-x\right)\left(5x+3\right)}{\left(3x-7\right)\left(x-1\right)}=\frac{\left(1-x\right)\left(5x+3\right)}{\left(7-3x\right)\left(1-x\right)}=\frac{\left(5x+3\right)}{\left(7-3x\right)}\)
Bài 1:
a)-2x-3.( x-17 )= 34-2.( -x+25 )
b)17x+3.( -16x-37 )= 2x+43-4x
c){-3x+2. [ 45-x-3 ( 3x+7 ) -2x]+4x} = 55
g)-103-57: [ 5.( 2x-1 )2-( -9 )0 ]
Bài 2:
a)-5.( -x+7 )-3.( -x-5 )=-4.( 12-x )+48
b)7.( -x-7 )-4.( -2x-11 )=7.( 4x+10 )+9
c)-2.( 15-3x )-4.( -7x+8 )=-5-9.( -2x+1 )
d)5.( -3x-7 )-4.( -2x-11 )=7.( 4x+10 )+9
e)4( x-2 )2-13=( -3 )2.2-11.( -3 )
f)-52-( 2x-1 )3=( -13 ).( -3 )
a; -2\(x\) - 3.(\(x-17\)) = 34 - 2.( - \(x\) + 25)
- 2\(x\) - 3\(x\) + 51 = 34 + 2\(x\) - 50
2\(x\) + 2\(x\) + 3\(x\) = - 34 + 50 + 51
7\(x\) = 67
\(x\) = 67 : 7
\(x\) = \(\dfrac{67}{7}\)
Vậy \(x\) = \(\dfrac{67}{7}\)
b; 17\(x\) + 3.(- 16\(x\) - 37) = 2\(x\) + 43 - 4\(x\)
17\(x\) - 48\(x\) - 111 = 2\(x\) - 4\(x\) + 43
- 31\(x\) - 2\(x\) + 4\(x\) = 111 + 43
- \(x\) x (31 + 2 - 4) = 154
- \(x\) x (33 - 4) = 154
- \(x\) x 29 = 154
- \(x\) = 154 : (-29)
\(x\) = - \(\dfrac{154}{29}\)
Vậy \(x=-\dfrac{154}{29}\)
c; {-3\(x\) + 2.[45 - \(x\) - 3(3\(x\) + 7) - 2\(x\)] + 4\(x\) } = 55
{-3\(x\) + 2.[45 - \(x\) - 9\(x\) - 21 - 2\(x\)] + 4\(x\)} = 55
{- 3\(x\) + 2.[(45 - 21) - (\(x+9x\)+2\(x\))] + 4\(x\) } = 55
{ (- 3\(x\) + 4\(x\)) + 2.[24 - 12\(x\)] } = 55
\(x\) + 48 - 24\(x\) = 55
\(x-24x\) = 55 - 48
- 23\(x\) = 7
\(x\) = 7 : - 23
\(x=-\dfrac{7}{23}\)
Vậy \(x=-\dfrac{7}{23}\)
Bài 2 Tìm x biết :
a) -5 | x - 3 | + | 1/2x + 4 | = 7|
b) | 2x + 1 | - 4 | 5 - x | = 9
c) | 9 - | x | = 8
d) - | 2x + 4/3 | - 11 - x | = -7/3
Chứng tỏ biểu thức không phụ thuộc x:
1) (x-5)(2x+3)-2x(x-3)+x+7
2) (x-3)(x2+3x+9)-x3+7
3) (2x-1)(x+5)-x(2x+9)+6
4) (x+2)(x2-2x+4)-x3-7
5) 8x3-(2x-1)(4x2+2x+1)-5
bài này bạn nhân lần lượt ra, cuối cùng hết giá trị của x, cò lại số tự nhiên. vậy là đã cm được biểu thức k phụ thuộc vào giá trị của biến rồi đó.
VD:
\(\left(x-3\right)\left(x^2+3x+9\right)-x^3+7\)
\(=x^3+3x^2+9x-3x^2-9x-27-x^3+7\)
\(=-20\)