Cho tam giác ABC có góc A= 70 độ , kẻ BD vuông góc AC, CE vg AB, BD cắt CE tại I
a, tính góc ABD, góc ACE
b, Tính góc BIC
Bài 5: Cho ABC cân tại A. Kẻ BD vuông góc với AC và kẻ CE vuông góc với AB. BD và CE cắt nhau tại I. Chứng minh:a) tam giác ABD = tam giác ACEb) góc BAI = góc CAIc) AI là đường trung trực của BC.
a) Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC(ΔABC cân tại A)
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE(cạnh huyền-góc nhọn)
b) Xét ΔBEC vuông tại E và ΔCDB vuông tại D có
BC chung
\(\widehat{EBC}=\widehat{DCB}\)(hai góc ở đáy của ΔABC cân tại A)
Do đó: ΔBEC=ΔCDB(cạnh huyền-góc nhọn)
Suy ra: \(\widehat{BCE}=\widehat{DBC}\)(hai góc tương ứng)
hay \(\widehat{IBC}=\widehat{ICB}\)
Xét ΔIBC có \(\widehat{IBC}=\widehat{ICB}\)(cmt)
nên ΔIBC cân tại I(Định lí đảo của tam giác cân)
\(\Leftrightarrow IB=IC\)(hai cạnh bên)
Xét ΔBAI và ΔCAI có
BA=CA(ΔABC cân tại A)
AI chung
IB=IC(cmt)
Do đó: ΔBAI=ΔCAI(c-c-c)
Suy ra: \(\widehat{BAI}=\widehat{CAI}\)(hai góc tương ứng)
c) Ta có: AB=AC(ΔABC cân tại A)
nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: IB=IC(cmt)
nên I nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy AI là đường trung trực của BC(đpcm)
https://hoc24.vn/cau-hoi/cho-tam-giac-abc-can-tai-a-ke-bd-vuong-goc-voi-ac-va-ke-ce-vuong-goc-voi-ab-bd-va-ce-cat-nhau-tai-i-chung-minh-goc-bai-goc-cai-ai-la-trung-truc.69327720128
bài 4: cho tam giác ABC cân tại A (góc A nhỏ hơn 90 độ). Kẻ BD vuông góc với AC tại D và CE vuông góc AB tại E .
a, chúng minh tam giác ABD= tam giác ACE, từ đó suy ra góc ABD= góc ACE
b, gọi H là giao điểm của BD và CE , chứng minh tam giác BHC là tam giác cân so sánh HB và HD
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
AB=AC
góc A chung
=>ΔADB=ΔAEC
=>góc ABD=góc ACE
b: góc HBC+góc ABD=góc ABC
góc HCB+góc ACE=góc ACB
mà góc ABD=góc ACE; góc ABC=góc ACB
nên góc HBC=góc HCB
=>ΔBHC cân tại H
=>HB=HC>HD
Cho tam giác nhọn ABC , kẻ BD vuông góc với AC tại D, kẻ CE vuông góc với AB tại E. BD và CE cắt nhau tại H. a, Chứng minh: góc ABD= góc ACE b, Biết góc ABC=65 độ, góc ACB=45 độ. Tính góc BHC
Bài 1: Cho tam giác ABC có góc A = 70*. Tia phân giác của B cắt tia phân giác của C ở I và cắt đường phân giác của góc ngoài tại C ở K. Tính góc BIC và góc BKC.
Bài 2: Cho tam giác ABC vuông góc tại A, kẻ đường cao AH. Tia phân giác của góc A cắt BC tại D. Biết góc DAH = 15*. Tính các góc của tam giác ABC.
Bài 3: Cho tam giác ABC có góc A, B, C là góc nhọn, góc A = 50*. Qua B kẻ đoạn thẳng BD vuông góc với AC (D thuộc AC). Qua C kẻ CE vuông góc với AB (E thuộc AB). Gọi H là giao điểm của BD và CE.
a) Tính góc ABD và góc ACE.
b) Tính góc DHE.
Cho tam giác ABC cân tại A (góc A= 90o);kẻ đường thẳng BD vuông góc với AC (DeAC); CE vuông góc với AB (EeAB) .BD;CE cắt nhau tại H
a) chứng minh : tam giác ABD= tam giác ACE
b) tam giác BHC là tam giác gì vì sao
c) so sánh đoạn HB và HD
d) trên tia đối tia EH lấy điểm N sao cho NH< HC ;trên tia đối của tia DH lấy điểm M sao cho MH=NH. Chứng minh các đường thẳng BN;AH;CM đồng quy
lm đc mà lừi lm hết qué:((
Tái bút : câu c, d chắc ko lm đc:))
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
góc BAD chung
DO đó: ΔABD=ΔACE
b: XétΔHBC có \(\widehat{HBC}=\widehat{HCB}\)
nênΔHBC cân tại H
c: ta có: HB=HC
mà HC>HD
nên HB>HD
cho tam giác ABC có 3 góc nhọn và AB<AC. Kẻ BD vuông góc AC, CE vuông góc AB. BD cắt CE tại I a) so sánh góc ABD và góc ACE b) chứng minh IB<IC c) so sánh CE nhân AB và BD nhân AC d) chứng minh CE>BD
a: góc ABD+góc A=90 độ
góc ACE+góc A=90 độ
=>góc ABD=góc ACE
b: góc ABD=góc ACE
góc ABD+góc DBC=góc ABC
góc ACE+góc ICB=góc ACB
mà góc ABD=góc ACE và góc ABC>góc ACB
nên góc DBC>góc ICB
=>góc IBC>góc ICB
=>IC>IB
c: S ABC=1/2*CE*AB=1/2*BD*AC
=>CE*AB=BD*AC
Cho tam giác ABC có 3 góc đều nhọn, kẻ BD vuông góc với AC tại D, kẻ CE vuông góc với AB tại E, BD cắt CE tại H.
a) Chứng minh: góc ABD = góc ACE.
b) Cho góc ABC = 65o, góc ACB = 45o. Tính góc BHC.
a) "Chìa khóa" ở hai tam giác vuông HEB và HDC đó, có 2 góc đối đỉnh, Tổng 2 góc nhọn là 90o
b) Tính A^ . Rồi tính HCD^ và ABD^ . Dựa vào 2 số đo vừa tìm được và số đo ở đề bài tính HBC^ và HCB^ .
Một tam giác, có được số đo độ 2 góc rồi thì góc còn lại làm sao nhỉ ^^?! Trình bày ngắn gọn, có điều kiện CẦN và ĐỦ nhé ^^!
cho tam giác ABC cân tại A kể BD vuông góc với AC kề CE vuông góc với AB. Gọi y là giao điểm của BD và Ce
a)tam giác ABD= tam giác ACE
b)EY=YD
c)AY vuông BC
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
góc A chung
Do đó: ΔABD=ΔACE
b: Xét ΔAEY vuông tại E và ΔADY vuông tại D có
AY chung
AE=AD
Do đó: ΔAEY=ΔADY
=>EY=DY
c: AB=AC
YB=YC
Do đó:AY là đường trung trực của BC
=>AY vuông góc với BC
cho tam giác ABC cân tại A (A<90 độ) . Kẻ BD vuông góc với AC tại D và CE vuông góc với AB tại E
a) chứng minh tam giác ABD = tam giác ACE
b) trên tia đối của tia BD lấy điểm K sao cho BD = DK . Chứng minh tam giác BCK là tam giác cân
c) chứng minh ED song song với BC từ đó suy ra góc EDB = góc DKC
a) Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC(ΔBAC cân tại A)
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE(Cạnh huyền-góc nhọn)
A) XÉT ΔABD VUÔNG TẠI D, ΔACE VUÔNG TẠI E
CÓ; AB=AC (ΔABC CÂN TẠI A)
\(\widehat{BAC}\) : GÓC CHUNG
⇒ΔABD= ΔACE (C.HUYỀN-G.NHỌN)
XÉT ΔCDK VÀ ΔCDB CÓ
CD : CẠNH CHUNG
\(\widehat{CDK}=\widehat{CDB}\) =90
BD=DK (GT)
⇒ΔCDK = ΔCDB (C-G-C)
⇒CB=CK (2 CẠNH T.ỨNG)
⇒TAM GIÁC BCK CÂN TẠI C