a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
AB=AC
góc A chung
=>ΔADB=ΔAEC
=>góc ABD=góc ACE
b: góc HBC+góc ABD=góc ABC
góc HCB+góc ACE=góc ACB
mà góc ABD=góc ACE; góc ABC=góc ACB
nên góc HBC=góc HCB
=>ΔBHC cân tại H
=>HB=HC>HD
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
AB=AC
góc A chung
=>ΔADB=ΔAEC
=>góc ABD=góc ACE
b: góc HBC+góc ABD=góc ABC
góc HCB+góc ACE=góc ACB
mà góc ABD=góc ACE; góc ABC=góc ACB
nên góc HBC=góc HCB
=>ΔBHC cân tại H
=>HB=HC>HD
Cho tam giác ABC cân tại A, góc A nhỏ hơn 90 độ. Vẽ BD vuông góc với AC và CE vuông góc với AB. Gọi H là giao điểm của BD và CE.
a) Chứng minh Tam giác ABD = Tam giác ACE
b) Chứng minh tam giác HBC cân
Cho tam giác ABC cân tại A (góc A= 90o);kẻ đường thẳng BD vuông góc với AC (DeAC); CE vuông góc với AB (EeAB) .BD;CE cắt nhau tại H
a) chứng minh : tam giác ABD= tam giác ACE
b) tam giác BHC là tam giác gì vì sao
c) so sánh đoạn HB và HD
d) trên tia đối tia EH lấy điểm N sao cho NH< HC ;trên tia đối của tia DH lấy điểm M sao cho MH=NH. Chứng minh các đường thẳng BN;AH;CM đồng quy
Bài 4. Cho tam giác ABC cân tại A (Â < 90o). Vẽ BD vuông góc với AC tại D, CE vuông góc với AB tại E. Gọi H là giao điểm của BD và CE.
a)Chứng minh tam giác ABD = tâm giác ACE để suy ra CE = BD
b)Chứng minh AH là phân giác của góc BAC.
c)Chứng minh DE // BC
d)Trên tia CE lấy điểm M sao cho E là trung điểm của HM. Trên tia BD lấy điểm N sao cho D là trung điểm của HN. Chứng minh AM = AH và tam giác AMN cân.
e)Tam giác ABC cho trước phải có điều kiện gì để tam giác AMN là tam giác đều.
cho tam giác ABC cân tại A [góc A nhỏ hơn 90 độ ].Kẻ BD vuông góc AC [D thuộc AC ],CE vuông góc AB [E thuộc AB ],BD và CE cắt nhau tại H.
a] chứng minh tam giác ABD = tam giác ACE
b] Chứng minh tam giác BHC cân
c] chứng minh ED song song BC
d] AH cắt BC tại K, trên tia HK lấy điểm M sao cho K là trung điểm của HM. Chứng minh tam giác ACM vuông
Cho tam giác ABC cân tại A ( góc A < 90 độ), vẽ BD vuông góc AC và CE vuông góc AB. Gọi H là giao điểm của BD và CE.
a) Chứng minh: tam giác ABD = tam giác ACE.
b) Chứng minh: tam giác AED cân.
c) Chứng minh: AH là đường trung trực của ED.
d) Trên tia đối của tia DB lấy điểm K sao cho DK = DB. Chứng minh: góc ECB = góc DKC.
Cho tam giác ABC cân tại A, góc A nhỏ hơn 90 độ. Vẽ BD vuông AC và CE vuông AB. H là giao điểm của BD và CE. a) Chứng minh Tam giác ABD = Tam giác ACE b)So sánh HB và HD c)Trên tia đối của tia EH lấy điểmN sao cho NH<HC;Trên tia đối của tia DH lấy điểm M sao cho MH=NH.CMR các đường thẳng BN;AH;CM đồng quy
Cho tam giác ABC cân tại A, góc A nhỏ hơn 90 độ. Vẽ BD vuông AC và CE vuông AB. H là giao điểm của BD và CE. a) Chứng minh Tam giác ABD = Tam giác ACE b)So sánh HB và HD c)Trên tia đối của tia EH lấy điểmN sao cho NH<HC;Trên tia đối của tia DH lấy điểm M sao cho MH=NH.CMR các đường thẳng BN;AH;CM đồng quy
Cho tam giác ABC cân tại A, góc A nhỏ hơn 90 độ. Vẽ BD vuông AC và CE vuông AB. H là giao điểm của BD và CE. a) Chứng minh Tam giác ABD = Tam giác ACE b)So sánh HB và HD c)Trên tia đối của tia EH lấy điểmN sao cho NH<HC;Trên tia đối của tia DH lấy điểm M sao cho MH=NH.CMR các đường thẳng BN;AH;CM đồng quy
Bài 1: Cho tam giác ABC cân tại A. Kẻ BD vuông góc với AC, CE vuông góc với AB và BD và CE cắt nhau tại H. Chứng minh rằng:
a) Tam giác ABD = tam giác ACE.
b) Tam giác BHC cân.
c) ED//BC