Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Khánh Huyền
Xem chi tiết
『Kuroba ム Tsuki Ryoo...
23 tháng 9 2023 lúc 15:41

Bạn cần bài nào ạ? Nếu bạn cần giúp tất cả thì bạn tách ra từng CH khác nhau nhé!

Ngô Kiến Huy
Xem chi tiết
Nguyễn Hà Phương
9 tháng 3 2022 lúc 18:23
Bài này khó
Khách vãng lai đã xóa
Trâm
Xem chi tiết
Akai Haruma
15 tháng 7 2023 lúc 16:38

Lời giải:

$\frac{x-2y}{3z}$ có thể nhận giá trị lớn nhất nếu $x$ lớn nhất và $y,z$ nhỏ nhất có thể.

$x$ lớn nhất có thể nhận là $14$ (theo điều kiện)

$y,z$ nhỏ nhất có thể nhận là $1,2$ (do $y,z$ phân biệt)

Nếu $x=14, y=1,z=2$ thì $\frac{x-2y}{3z}=2$

Nếu $x=14; y=2, z=1$ thì $\frac{x-2y}{3z}=\frac{10}{3}>2$

Đáp án D.

lương thuỷ tiên
Xem chi tiết
Đào Mai Anh
31 tháng 3 2017 lúc 19:41

ko ai giúp đâu

Hoàng Thị Ngọc Anh
31 tháng 3 2017 lúc 19:46

bài này mk bt lm nhưng mk đag trog trạng thái mệt mỏi nên ngại lắm, để lúc nào rảnh mk giúp bn nhé!

Nh Giang
Xem chi tiết
Thùy Dương
Xem chi tiết
QEZ
19 tháng 5 2021 lúc 21:50

vẽ lại mạch ta có RAM//RMN//RNB

đặt theo thứ tự 3 R là a,b,c

ta có a+b+c=1 (1)

điện trở tương đương \(\dfrac{1}{R_{td}}=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) \(\Rightarrow I=\dfrac{U}{R_{td}}=9.\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\) với a,b,c>0

áp dụng bất đẳng thức cô si cho \(\dfrac{1}{a},\dfrac{1}{b},\dfrac{1}{c}\)  \(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{3}{\sqrt[3]{abc}}\ge\dfrac{3}{\left(\dfrac{a+b+c}{3}\right)}=\dfrac{9}{a+b+c}=9\)

\(\Leftrightarrow9\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge81\Leftrightarrow I\ge81\) I min =81 ( úi dồi ôi O_o hơi to mà vẫn đúng đá nhỉ)

dấu ''='' xảy ra \(\Leftrightarrow a=b=c\left(2\right)\)

từ (1) (2) \(\Rightarrow a=b=c=\dfrac{1}{3}\left(\Omega\right)\)

vậy ... (V LUN MẤT CẢ BUỔI TỐI R BÀI KHÓ QUÁ EM ĐANG ÔN HSG À )

 

 

QEZ
19 tháng 5 2021 lúc 21:09

em ơi chụp cả cái mạch điện a xem nào sao chụp nó bị mất r

Phương Anh
Xem chi tiết
Lấp La Lấp Lánh
26 tháng 9 2021 lúc 18:47

a) \(\dfrac{A}{x-2}=\dfrac{x^2+3x+2}{x^2-4}\)

\(\Leftrightarrow\dfrac{A}{x-2}=\dfrac{\left(x+2\right)\left(x+1\right)}{\left(x-2\right)\left(x+2\right)}\)

\(\Leftrightarrow\dfrac{A}{x-2}=\dfrac{x+1}{x-2}\Leftrightarrow A=x+1\)

b) \(\dfrac{M}{x-1}=\dfrac{x^2+3x+2}{x+1}\)

\(\Leftrightarrow\dfrac{M}{x-1}=\dfrac{\left(x+1\right)\left(x+2\right)}{x+1}\)

\(\Leftrightarrow\dfrac{M}{x-1}=x+2\Leftrightarrow M=\left(x-1\right)\left(x+2\right)=x^2+x-2\)

Thùy Dương
Xem chi tiết
QEZ
20 tháng 5 2021 lúc 21:58

undefined

undefined

Huy Lý
Xem chi tiết