Tìm số nguyên x,y biết:
1)64.4x-1=168
2)x10=x
3)2x+80=3y(x;y thuộc N)
Tìm các số nguyên x, y biết:
a) (x-3) (2y +1 )=7
b) (2x + 1) (3y-2)=-55
Tìm số nguyên dương x,y với x>y biết:
2x+1 chia hết cho y và 2y+1 chia hết cho x
Ta có: 2x + 1 chia hết cho y và 2y + 1 chia hết cho x
=> 2x + 1 chia hết x và 2y + 1 chia hết y
=> x = y = 1
Ta có: 2x + 1 chia hết cho y và 2y + 1 chia hết cho x
=> 2x + 1 chia hết x và 2y + 1 chia hết y
=> x = y = 1
Tìm số nguyên x biết:
2x-1 là bội x-3
Ta có:
\(2x-1\) là bội của \(x-3\Rightarrow2x-1⋮x-3\)
Lại có:
\(2x-1=2x-6+5=2\left(x-1\right)+5\)
Vì \(x\in Z\Rightarrow2\left(x-1\right)+5\in Z\) và \(2\left(x-1\right)⋮x-1\Rightarrow5⋮x-1\Rightarrow x-1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Ta có bảng sau:
\(x-1\) | \(1\) | \(-1\) | \(5\) | \(-5\) |
\(x\) | \(2\) | \(0\) | \(6\) | \(-4\) |
Vậy \(x\in\left\{2;0;6;-4\right\}\)
Tìm số nguyên x biết:
a) (x-1) (x3+8)=0
b) (x+1) ( 2x2-8)=0
c) (x2+3)(x+5)<0
Làm 1 câu bất kì cũng dc ạ!
a) \(\left(x-1\right)\left(x^3+8\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-1=0\\x^3+8=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=1\\x^3=-8\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
b) \(\left(x+1\right)\left(2x^2-8\right)=0\\ \Rightarrow\left[{}\begin{matrix}x+1=0\\2x^2-8=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-1\\x^2=4\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-1\\x=\pm2\end{matrix}\right.\)
c) Vì : \(x^2+3\ge3>0\forall x\)
nên để : \(\left(x^2+3\right)\left(x+5\right)< 0\)
Thì : \(x+5< 0\\ \Rightarrow x< -5\)
Tìm các cặp số nguyên x , y biết :
a) x . y = -21
b) ( 2x - 1 ) ( 2x + 1 ) = -35
c) ( x - 1 ) ( y +3 ) = 7
Phần a bạn liệt kê hết ra nhé
Có Ư(-21)={-21;-7;-3;-1;1;3;7;21}
a) Vì x.y= -21 suy ra x;y thuộc Ư(21)={ -1,-3,-7,-21,1,3,7,21 }
( rồi em tự suy ra các cặp x,y nhé )
Tìm các số nguyên x,y:
a) (7-2x) (y-3) =12
b) (2x-3) (y+1)=12
c)xy-3y=5
LÀM 1 CÂU CŨNG DC Ạ!
a. Với $x,y$ là số nguyên thì $7-2x, y-3$ cũng là số nguyên. Mà $(7-2x)(y-3)=12$ và $7-2x$ là số lẻ nên ta xét các TH sau:
TH1:
$7-2x=1, y-3=12\Rightarrow x=3; y=15$ (tm)
TH2:
$7-2x=-1; y-3=-12\Rightarrow x=4; y=-9$ (tm)
TH3:
$7-2x=3; y-3=4\Rightarrow x=2; y=7$ (tm)
TH4:
$7-2x=-3; y-3=-4\Rightarrow x=5; y=-1$ (tm)
b.
Với $x,y$ là số nguyên thì $2x-3, y+1$ cũng là số nguyên. Mà $(2x-3)(y+1)=12$ và $2x-3$ là số lẻ nên ta có các TH sau:
TH1: $2x-3=1; y+1=12\Rightarrow x=2; y=11$ (tm)
TH2: $2x-3=-1; y+1=-12\Rightarrow x=1; y=-13$ (tm)
TH3: $2x-3=3; y+1=4\Rightarrow x=3; y=3$ (tm)
TH4: $2x-3=-3; y+1=-4\Rightarrow x=0; y=-5$ (tm)
c.
$xy-3y=5$
$y(x-3)=5$
Với $x,y$ là số nguyên thì $x-3, y$ cũng là số nguyên.
Mà $y(x-3)=5$ nên ta có các TH sau:
TH1: $x-3=1, y=5\Rightarrow x=4; y=5$ (tm)
TH2: $x-3=-1; y=-5\Rightarrow x=2; y=-5$ (tm)
TH3: $x-3=5; y=1\Rightarrow x=8; y=1$ (tm)
TH4: $x-3=-5; y=-1\Rightarrow x=-2; y=-1$ (tm)
Tìm các số nguyên a,v,c,d,e,biết tổng của chúng bằng 0 và a+b=c+d=d+e=2
Tìm các số nguyên x,y,z biết x+y+z=0;x+y=3;y+z=-1
Bài 1 . Tìm các số tự nhiên n biết : 6 là bội của n + 1 .
Bài 2 . Tìm các số nguyên x sao cho 2x - 5 chia hết cho x + 1.
6 là bội của n+1
=> 6 chia hết cho n+1
=> n+1 thuộc Ư(6)={-1,-2,-3,-6,1,2,3,6}
Ta có bảng :
n+1 | -1 | -2 | -3 | -6 | 1 | 2 | 3 | 6 |
n | -2 | -3 | -4 | -7 | 0 | 1 | 2 | 5 |
Vậy n={-7,-4,-3,-2,0,1,2,5}
6 là bội của n+1
=> 6 chia hết cho n+1
=> n+1 thuộc Ư(6)={-1,-2,-3,-6,1,2,3,6}
Ta có bảng :
n+1 | -1 | -2 | -3 | -6 | 1 | 2 | 3 | 6 |
n | -2 | -3 | -4 | -7 | 0 | 1 | 2 | 5 |
Vậy n={-7,-4,-3,-2,0,1,2,5}
Tìm các số nguyên x y biết
xy+2x=y+5