Cho \(x+y>1\). Chứng minh rằng \(x^4+y^4>\frac{1}{8}\).
Cho x+y=1, chứng minh rằng\(x^4+y^4\ge\frac{1}{8}\)
Áp dụng BĐT phụ:\(\frac{x^2}{m}+\frac{y^2}{n}\ge\frac{\left(x+y\right)^2}{m+n}\)
\(\frac{x^4}{1}+\frac{y^4}{1}\ge\frac{\left(x^2+y^2\right)^2}{2}=\frac{\left(\frac{x^2}{1}+\frac{y^2}{1}\right)^2}{2}\ge\frac{\frac{\left(x+y\right)^4}{4}}{2}=\frac{1}{8}\)
Dấu "=" xảy ra tại x=y=1/2
cho 2 số dương x,y thỏa mãn x+y=1
chứng minh rằng \(P=6\left(x^3+y^3\right)+8\left(x^4+y^4\right)+\frac{5}{xy}\ge\frac{45}{2}.\)
Áp dụng BĐT AM-GM ta có: \(xy\le\frac{\left(x+y\right)^2}{4}\le\frac{x^2+y^2}{2}\)
Suy ra: \(P=6\left[\left(x+y\right)^3-3xy\left(x+y\right)\right]+8\left[\left(x^2+y^2\right)^2-2\left(xy\right)^2\right]+\frac{5}{xy}\)
\(\ge6\left(1-\frac{3}{4}\right)+8\left(\frac{1}{4}-\frac{1}{8}\right)+\frac{5}{\frac{1}{4}}\) (Do x+y=1) \(\Rightarrow P\ge6-\frac{9}{2}+2-1+20=\frac{45}{2}\)(đpcm).
Dấu "=" xảy ra <=> x=y=1/2.
cho x+y=1 chứng minh rằng x^4+y^4>1/8
dễ Cm được x² +y² ≥ (x+y)²/2
<=> x² +y² ≥ 1/2(x² +y²) + xy
<=> 1/2(x² +y²) -xy ≥ 0
<=> 1/2(x-y)² ≥ 0 ( luôn đúng )
vậy x² + y² ≥ (x+y)²/2 = 1/2
tương tự thì
x^4 + y^4 ≥ (x² +y²)²/2 ≥ (1/2)²/2 = 1/8
vậy x^4 + y^4 ≥ 1/8
dấu = xảy ra <=> x=y=1/2
Chứng minh rằng
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{9}{x+y+z}\ge\frac{4}{x+y}+\frac{4}{y+z}+\frac{4}{z+x}\)
Lời giải:
BĐT cần chứng minh tương đương với:
\((x+y+z)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{9}{x+y+z}\right)\geq (x+y+z)\left(\frac{4}{x+y}+\frac{4}{y+z}+\frac{4}{z+x}\right)\)
\(\Leftrightarrow 12+\frac{y+z}{x}+\frac{x+z}{y}+\frac{x+y}{z}\geq 12+\frac{4x}{y+z}+\frac{4y}{x+z}+\frac{4z}{x+y}\)
\(\Leftrightarrow (\frac{y}{x}+\frac{y}{z}-\frac{4y}{x+z})+(\frac{z}{x}+\frac{z}{y}-\frac{4z}{x+y})+(\frac{x}{y}+\frac{x}{z}-\frac{4x}{y+z})\geq 0\)
\(\Leftrightarrow \frac{y(x-z)^2}{xz(x+z)}+\frac{z(x-y)^2}{xy(x+y)}+\frac{x(y-z)^2}{yz(y+z)}\geq 0\)
(luôn đúng với mọi $x,y,z>0$)
Do đó ta có đpcm.
Dấu "=" xảy ra khi $x=y=z$
Cho x,y,z >0 và x+y+z = 6. chứng minh rằng \(8^x+8^y+8^z\ge4^{x+1}+4^{y+1}+4^{z+1}\)
Dấu "=" xảy ra khi x=y=2; ta có : \(\sqrt[3]{8^x.8^x}=\sqrt[3]{64^x}=4^x\)
\(8^x+8^x+8^2\ge3\sqrt[3]{8^x.8^x.8^2}=12.4^x\)
\(8^y+8^y+8^2\ge12.4^y\)
\(8^z+8^z+8^2\ge12.4^z\)
Cộng 3 vế BĐT trên => đpcm
Một cách khác:
Đặt $(2^x,2^y,2^z)=(a,b,c)\Rightarrow abc=2^{x+y+z}=2^6=64$
Bài toán trở thành:
Cho $a,b,c>0$ sao cho $abc=64$. CMR: $a^3+b^3+c^3\geq 4(a^2+b^2+c^2)$
------------------------------
Áp dụng BĐT Bunhiacopxky và AM-GM:
$(a^3+b^3+c^3)(a+b+c)\geq (a^2+b^2+c^2)^2$
\(\Rightarrow a^3+b^3+c^3\geq \frac{(a^2+b^2+c^2)^2}{a+b+c}(1)\)
Mà: \(a^2+b^2+c^2\geq \frac{(a+b+c)^2}{3}\geq \frac{(a+b+c).3\sqrt[3]{abc}}{3}=\frac{(a+b+c).3\sqrt[3]{64}}{3}=4(a+b+c)(2)\)
Từ \((1);(2)\Rightarrow a^3+b^3+c^3\geq \frac{(a^2+b^2+c^2).4(a+b+c)}{a+b+c}=4(a^2+b^2+c^2)\) (đpcm)
Vậy.......
Giả sử x khác y; -y thoả mãn điều kiện:\(\frac{y}{x+y}+\frac{2y^2}{x^2+y^2}+\frac{4y^4}{x^4+y^4}+\frac{8y^8}{x^8-y^8}=4\)
Chứng minh rằng: 5y=4x
Cho x,y>0 thỏa x+y=1 chứng minh rằng \(A\ge5\)
Với \(A=8\left(x^4+y^4\right)+\frac{1}{xy}\)
có bđt: a²+b² ≥ (a+b)²/2 (*)
(*) <=> 2a²+2b² ≥ a²+b²+2ab <=> a²+b²-2ab ≥ 0 <=> (a-b)² ≥ 0 bđt đúng, dấu "=" khi a = b
- - -
ad (*) 2 lần liên tiếp:
x^4 + y^4 ≥ (x²+y²)²/2 ≥ [(x+y)²/2]²/2 = (x+y)^4 /8 = 1/8
=> 8(x^4 + y^4) ≥ 1 (*)
mặt khác, có bđt: (x-y)² ≥ 0 <=> x²+y² ≥ 2xy <=> x²+y²+2xy ≥ 4xy <=> (x+y)² ≥ 4xy
=> 1/xy ≥ 4/(x+y)² = 4 (**)
(*) + (**): 8(x^4 + y^4) + 1/xy ≥ 1+4 = 5 (đpcm) dấu "=" khi x = y = 1/2
Cho x,y,z>0 và xyz=1. Chứng minh rằng:
\(\frac{x}{y^4+2}+\frac{y}{z^4+2}+\frac{z}{x^4+2}\ge1\)
Đặt \(A=\frac{x}{y^4+2}+\frac{y}{z^42}+\frac{z}{x^4+2}\ge1\)
\(A=\frac{y^4}{x+2}+\frac{z^4}{y+2}+\frac{x^4}{z+2}\ge1\)
Còn lại thì bạn tính tổng nha! Lớn hơn hoặc bằng 1 là được :))
Cho x, y >0, Chứng minh rằng :
\(\frac{-1}{x}+\frac{1}{y}>hoac=\frac{4}{x+y}\)