Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
nguyen dinh thi

Cho x,y,z >0 và x+y+z = 6. chứng minh rằng \(8^x+8^y+8^z\ge4^{x+1}+4^{y+1}+4^{z+1}\)

đề bài khó wá
1 tháng 12 2019 lúc 10:02

Dấu "=" xảy ra khi x=y=2; ta có : \(\sqrt[3]{8^x.8^x}=\sqrt[3]{64^x}=4^x\)

\(8^x+8^x+8^2\ge3\sqrt[3]{8^x.8^x.8^2}=12.4^x\)

\(8^y+8^y+8^2\ge12.4^y\)

\(8^z+8^z+8^2\ge12.4^z\)

Cộng 3 vế BĐT trên => đpcm

Khách vãng lai đã xóa
Akai Haruma
1 tháng 12 2019 lúc 11:13

Một cách khác:

Đặt $(2^x,2^y,2^z)=(a,b,c)\Rightarrow abc=2^{x+y+z}=2^6=64$

Bài toán trở thành:

Cho $a,b,c>0$ sao cho $abc=64$. CMR: $a^3+b^3+c^3\geq 4(a^2+b^2+c^2)$

------------------------------

Áp dụng BĐT Bunhiacopxky và AM-GM:

$(a^3+b^3+c^3)(a+b+c)\geq (a^2+b^2+c^2)^2$

\(\Rightarrow a^3+b^3+c^3\geq \frac{(a^2+b^2+c^2)^2}{a+b+c}(1)\)

Mà: \(a^2+b^2+c^2\geq \frac{(a+b+c)^2}{3}\geq \frac{(a+b+c).3\sqrt[3]{abc}}{3}=\frac{(a+b+c).3\sqrt[3]{64}}{3}=4(a+b+c)(2)\)

Từ \((1);(2)\Rightarrow a^3+b^3+c^3\geq \frac{(a^2+b^2+c^2).4(a+b+c)}{a+b+c}=4(a^2+b^2+c^2)\) (đpcm)

Vậy.......

Khách vãng lai đã xóa

Các câu hỏi tương tự
Kiên NT
Xem chi tiết
Rosie
Xem chi tiết
Nguyễn Thùy Lâm
Xem chi tiết
Quỳnh Anh
Xem chi tiết
Khánh Ngọc
Xem chi tiết
Tình Nguyễn Hữu
Xem chi tiết
Phạm Thị Hằng
Xem chi tiết
hungdung
Xem chi tiết
Hoàng
Xem chi tiết