x^2 + 36x -10 = 0
tìm x, bt:
a)x2-7x+10=0
b)36x2-49=0
a) \(\Leftrightarrow x^2-5x-2x+10=0\)
\(\Leftrightarrow x\left(x-5\right)-x\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=2\end{cases}}}\)
Vậy \(x=5\)hoặc \(x=2\)
b) \(\Leftrightarrow\left(6x\right)^2-7^2=0\)
\(\Leftrightarrow\left(6x+7\right)\left(6x-7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}6x=-7\\6x=7\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{-7}{6}\\x=\frac{7}{6}\end{cases}}\)
Vậy \(x=\frac{-7}{6}\)hoặc \(x=\frac{7}{6}\)
a, x2-7x+10=0
<=> x2-2x-5x+10=0
<=> x.(x-2)-5.(x-2)=0
<=> (x-2).(x-5)=0
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=5\end{cases}}}\)
b, 36x2-49=0
<=> (6x)2-72=0
<=> (6x-7).(6x+7)=0
\(\Leftrightarrow\orbr{\begin{cases}6x-7=0\\6x+7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{6}\\x=-\frac{7}{6}\end{cases}}\)
tìm x, bt:
a)x2-7x+10=0
b) 36x2-49=0
a)x2-7x+10=0
\(\Leftrightarrow x^2-2x-5x+10=0\)
\(\Rightarrow x\left(x-2\right)-5\left(x-2\right)=0\)
\(\Rightarrow\left(x-5\right)\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-5=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=2\end{matrix}\right.\)
Vậy \(x=5\) hoặc \(x=2\)
b) 36x2-49=0
\(\Leftrightarrow\left(6x\right)^2-7^2=0\)
\(\Rightarrow\left(6x+7\right)\left(6x-7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}6x+7=0\\6x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}6x=-7\\6x=7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-7}{6}\\x=\dfrac{7}{6}\end{matrix}\right.\)
Vậy \(x=\dfrac{-7}{6}\) hoặc \(x=\dfrac{7}{6}\)
a) x2-7x+10=0
=> x2-2x-5x+10=0
=> x(x-2)-5(x-2)=0
=> x(x-2)=0 -> hoặc x =0 hoặc x-2=0-> x=2
hoặc -5(x-2)=0 -> x=2
vậy x= 0 hoặc x= 2
b) 36x2-49=0
=> (6x)2-72=0
=> (6x-7)(6x+7)=0
=>hoặc 6x-7=0 -> 6x=7 -> x=7:6
hoặc 6x+7=0->6x=-7-> x = 6:7
vậy x=7:6 hoặc x=6:7
rút gọn
√81x^2-8x với x >0
6×√36x^2 - 36x với x<0
\(\sqrt{81x^2}-8x=\sqrt{\left(9x\right)^2}-8x=\left|9x\right|-8x=9x-8x=x\) ( vì x > 0)
\(6.\sqrt{36x^2}-36x=6.\sqrt{\left(6x\right)^2}-36x=6.\left|6x\right|-36x=6.\left(-6x\right)-36x=-36x-36x=-72x\) (vì x < 0)
Bn có thể dùng CT toán hx đc ko??/ Mk ko hỉu cái đề!
tìm x biết a) ( x + 3 )2 - ( 2x + 1 ).( x+3 ) = 0 ; b) x3 - 12x2 + 36x = 0
\(a,\Leftrightarrow\left(x+3\right)\left(x+3-2x-1\right)=0\\ \Leftrightarrow\left(x+3\right)\left(2-x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\\ b,\Leftrightarrow x\left(x^2-12x+36\right)=0\\ \Leftrightarrow x\left(x-6\right)^2=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
a, (x+3)2 - ( 2x + 1 ).( x+3)=0 b, x3-12x2+36x =0
=> (x+3).(x+3-2x-1) => x(x2-12x+36) = 0
=>(x+3).(-x+2) => x(x-6)2 = 0
=> x+3=0 <=> x=-3 => x=0 <=> x=0
-x+2=0 <=> x=-2 x-6= 0 <=> x=6
Tìm x
a) (2x-5)2-(5+2x)=0
b) 27x3-54x2+36x=0
c)(x3+8)-(x+2)(x-4)=0
d)x6-1=0
a) (2x - 5)2 - (5 + 2x) = 0
<=> 4x2 - 22x + 20 = 0
\(\Leftrightarrow\left(2x-\dfrac{11}{2}\right)^2=\dfrac{41}{4}\)
\(\Leftrightarrow x=\dfrac{\pm\sqrt{41}+11}{4}\)
b) \(27x^3-54x^2+36x=0\)
\(\Leftrightarrow x\left(3x^2-6x+4\right)=0\)
\(\Leftrightarrow x=0\) (Vì \(3x^2-6x+4=3\left(x-1\right)^2+1>0\forall x\))
c) x3 + 8 - (x + 2).(x - 4) = 0
\(\Leftrightarrow\left(x+2\right).\left(x^2-2x+4\right)-\left(x+2\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2-3x+8\right)=0\)
\(\Leftrightarrow x=-2\) (Vì \(x^2-3x+8=\left(x-\dfrac{3}{2}\right)^2+\dfrac{23}{4}>0\))
d) \(x^6-1=0\)
\(\Leftrightarrow\left(x^2\right)^3-1=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^4+x^2+1\right)=0\)
\(\Leftrightarrow x^2-1=0\) (Vì \(x^4+x^2+1>0\))
\(\Leftrightarrow x=\pm1\)
\(d,x^6-1=0\\ \Leftrightarrow\left(x^2\right)^3-1^3=0\\ \Leftrightarrow\left(x^2-1\right)\left(x^4+x^2+1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x^4+x^2+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\\x^4+x^2+1=0\left(Vô.lí,vì:x^4\ge0;x^2\ge0,\forall x\in R\right)\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\\ c,\left(x^3+8\right)-\left(x+2\right)\left(x-4\right)=0\\ \Leftrightarrow\left(x^3+8\right)-\left(x^2-2x-8\right)=0\\ \Leftrightarrow x^3-x^2+2x+16=0\\ \Leftrightarrow x^3+2x^2-3x^2-6x+8x+16=0\\ \Leftrightarrow x^2\left(x+2\right)-3x\left(x+2\right)+8\left(x+2\right)=0\\ \Leftrightarrow\left(x^2-3x+8\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2-3x+8=0\left(Vô.lí\right)\\x+2=0\end{matrix}\right.\Leftrightarrow x=-2\)
c)(x^3+ 8) - (x + 2)(x - 4) = 0
<=> x^3 -x^2 + 2x +8 + 8 = 0
<=> x^3 -x^2 + 2x + 16 = 0
<=> (x+2)(x^2-3x+8) = 0
=> x = -2
27x2×x+69x2+36x=0
Đề ko có vấn đề chứ ạ ?
\(27x^2.x+69x^2+36x=0\)
Tương đương vs pt : \(\Leftrightarrow27x^3+69x^2+36x=0\)
\(\Leftrightarrow3x\left(9x^2+23x+12\right)=0\)
TH1 : \(3x=0\Leftrightarrow x=0\)
TH2 : \(\Delta=23^2-4.12.9=529-432=97>0\)
Phương trình có 2 nghiệm phân biệt
\(x_1=\frac{-23-\sqrt{97}}{3};x_2=\frac{-23+\sqrt{97}}{3}\)
giúp mk vs
tìm x
( x^2 + 9 ) ^2 - 36x^2 = 0
( x^2 - 25 ) ^2 - ( x - 5 ) ^2 = 0
a,(x^2+9)^2-36x^2=0
(x^2+9-6x)(x^2+9+6x=0
=>x^2+9-6x=0 hoac x^2+9+6x=0
+,x^2+9-6x=0
x^2-6x+9=0
( x-3)^2 =0
=>x-3 =0
x =3
+,x^2+9+6x=0
x^2+6x+9=0
(x+3)^2 =0
=>x+3 =0
x =-3
Ý dưới cũng tương tự..
Dấu trừ ở trước thì bạn phải đổi dấu trog ngoặc
Tìm x:
a) x^2 - 25x=0
b) (x-3)^2 - 36x^2=0
c) 2x(3-x)+2x^2=12
d) x(x-2)-x+2=0
a) x2 - 25x = 0
=> x(x - 25) = 0
=> \(\orbr{\begin{cases}x=0\\x=25\end{cases}}\)
b) (x - 3)2 - 36x2 = 0
=> (x - 3)2 - (6x)2 = 0
=> \(\left(x+6x-3\right)\left(x-6x-3\right)=0\)
=> \(\orbr{\begin{cases}7x-3=0\\-5x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{3}{7}\\x=-\frac{3}{5}\end{cases}}\)
c) 2x(3 - x) + 2x2 = 12
=> 6x - 2x2 + 2x2 = 12
=> 6x = 12
=> x = 2
d) x(x - 2) - x + 2 = 0
=> x(x - 2) - (x - 2) = 0
=> (x - 1)(x - 2) = 0
=> \(\orbr{\begin{cases}x=1\\x=2\end{cases}}\)
a. x2 - 25x = 0
\(\Leftrightarrow x\left(x-25\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-25=0\end{cases}}\)
\(\orbr{\begin{cases}x=0\\x=25\end{cases}}\)
Vậy ...
b.(x-3)2 - 36x2 = 0
\(\Leftrightarrow\left(x-3-6x\right)\left(x-3+6x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}-5x-3=0\\7x-3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-3}{5}\\x=\frac{3}{7}\end{cases}}\)
Vậy...
c.2x(3-x)+2x2 = 12
<=> 6x - 2x2 + 2x2 = 12
<=> 6x = 12
<=> x = 2
d. x (x-2) - x + 2 =0
<=> x(x-2 ) - (x - 2 ) = 0
<=> ( x - 2 ) ( x - 1 ) = 0
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=1\end{cases}}\)
Vậy...
tìm x , biết rằng : \(36x-x^2=0\)
36x - x2 = 0
<=> x(36 - x) = 0
<=> x = 0 hoặc 36 - x = 0
<=> x = 0 hoặc x = 36
Vậy x = 0 hoặc x = 36
ung ho minh len 200 nha