Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phan Anh Hong

Những câu hỏi liên quan
Đặng Nguyễn Thảo Nguyên
Xem chi tiết
Nguyễn Huyền Trang
Xem chi tiết
『Kuroba ム Tsuki Ryoo...
2 tháng 4 2023 lúc 9:59

`C(x) - D(x)=(7x^3+21+3x^2-15x)-(-3x^3 + 3x - 9)`

`= 7x^3+21+3x^2-15x+3x^3 - 3x + 9`

`= (7x^3+3x^3)+3x^2+(-15x-3x)+(21+9)`

`= 10x^3+3x^2-18x+30`

Hệ số cao nhất: `10`

`C(x)+D(x)=(7x^3+21+3x^2-15x)+(-3x^3 + 3x - 9)`

`= 7x^3+21+3x^2-15x-3x^3 + 3x - 9`

`= (7x^3-3x^3)+3x^2+(-15x+3x)+(21-9)`

`= 4x^3+3x^2-12x+12`

Hệ số cao nhất: `4`

`E(x)-F(x) = (16x^3 + 4 + 3x) - (-8 + 20x - 16x)`

`= 16x^3 + 4 + 3x +8 - 20x + 16x`

`= 16x^3+ (3x-20x+16x) +(4+8)`

`= 16x^3-x+12`

Hệ số cao nhất: `16`

`E(x)+F(x)=(16x^3 + 4 + 3x) + (-8 + 20x - 16x)`

`= 16x^3 + 4 + 3x- 8 + 20x - 16x`

`= 16x^3 +(3x+20x-16x)+(4-8)`

`= 16x^3+7x-4`

Hệ số cao nhất: `16`

Nguyễn Linh Anh
Xem chi tiết
tuan manh
Xem chi tiết
Đặng Tuấn Anh
14 tháng 6 2018 lúc 19:01

a) x(x-5)+2(x-5) = (x-5)(x+2)
b) (x-7)(x-2)

c) (x+2)(x^2+2x+4)+5y(x+2) = (x+2)(x^2+2x+4+5y) 

d) (x^2+8)^2 -16x^2 = (x^2+8-4x)(x^2+8+4x)

đấng ys
Xem chi tiết
Ngô Thành Chung
10 tháng 10 2021 lúc 20:46

y = \(\sqrt[3]{\left(x^2+8\right)^2}-3\sqrt[3]{x^2+8}+1\)

Đặt \(\sqrt[3]{\left(x^2+8\right)}=t\)

Do x2 + 8 ≥ 8 với mọi x

⇒ t ≥ 2 với mọi x

y = t2 - 3t + 1

Min của hàm số đã cho là Min của y = g(t) = t2 - 3t + 1 trên [2 ; +\(\infty\))

g(t) đồng biến trên \(\left(\dfrac{3}{2};+\infty\right)\) nên nó đồng biến trên (2 ; +\(\infty\))

⇒ Giá trị nhỏ nhất của g(t) trên [2 ; +\(\infty\)) là g(2) = - 1

Nguyễn Thị Như Quỳnh
Xem chi tiết
Nguyen Duc Tai
3 tháng 12 2019 lúc 22:13

Lập bảng thay các giá trị nguyên trong khoảng vào hàm rồi calc x:

x=0 ra kq:-504

x=1 ra kq:-515(GTNN)

x=2 ra kq:-472

x=3 ra kq:-339(GTLN)

Khách vãng lai đã xóa
Geminian1468
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 8 2021 lúc 23:35

a: Ta có: \(x^5-x^3+x^2-1\)

\(=x^3\left(x^2-1\right)+\left(x^2-1\right)\)

\(=\left(x-1\right)\cdot\left(x+1\right)^2\cdot\left(x^2-x+1\right)\)

b: Ta có: \(5x^3-45x\)

\(=5x\left(x^2-9\right)\)

\(=5x\left(x-3\right)\left(x+3\right)\)

c: Ta có: \(16x^4y^2+2xy^5\)

\(=2xy^2\left(8x^3+y^3\right)\)

\(=2xy^2\cdot\left(2x+y\right)\left(4x^2-2xy+y^2\right)\)

d: Ta có: \(a^3-8+6a^2-12a\)

\(=\left(a-2\right)\left(a^2+2a+4\right)+6a\left(a-2\right)\)

\(=\left(a-2\right)\left(a^2+8a+4\right)\)

e: Ta có: \(x^4+x^3+x+1\)

\(=x^3\left(x+1\right)+\left(x+1\right)\)

\(=\left(x+1\right)^2\cdot\left(x^2-x+1\right)\)

Phương Nguyễn
Xem chi tiết
ILoveMath
22 tháng 8 2021 lúc 22:18

a, \(16x^2-\left(1+\sqrt{3}\right)^2=0\\ \Rightarrow\left(4x-1-\sqrt{3}\right)\left(4x+1+\sqrt{3}\right)=0\\ \Rightarrow\left[{}\begin{matrix}4x-1-\sqrt{3}=0\\4x+1+\sqrt{3}=0\end{matrix}\right.\)

    \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1+\sqrt{3}}{4}\\x=\dfrac{-1-\sqrt{3}}{4}\end{matrix}\right.\)

b, \(x-2\sqrt{2x}+2=8\\ \Rightarrow x-\sqrt{8x}-6=0\\ \Rightarrow x-6=\sqrt{8x}\\ \Rightarrow\left(x-6\right)^2=\sqrt{8x}^2\\ \Rightarrow x^2-12x+36=8x\\ \Rightarrow x^2-20x+36=0\\ \Rightarrow\left(x^2-2x\right)-\left(18x-36\right)=0\)

    \(\Rightarrow x\left(x-2\right)-18\left(x-2\right)=0\\ \Rightarrow\left(x-2\right)\left(x-18\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-2=0\\x-18=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=2\\x=18\end{matrix}\right.\)

Nguyễn Lê Phước Thịnh
22 tháng 8 2021 lúc 22:16

1: Ta có: \(16x^2-\left(\sqrt{3}+1\right)^2=0\)

\(\Leftrightarrow\left(4x-\sqrt{3}-1\right)\left(4x+\sqrt{3}+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{3}+1}{4}\\x=\dfrac{-\sqrt{3}-1}{4}\end{matrix}\right.\)

2: Ta có: \(x-2\sqrt{2x}+2=8\)

\(\Leftrightarrow\left(\sqrt{x}-2\right)^2=8\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}-2=2\sqrt{2}\\\sqrt{x}-2=-2\sqrt{2}\end{matrix}\right.\Leftrightarrow\sqrt{x}=2\sqrt{2}+2\)

\(\Leftrightarrow x=12+8\sqrt{2}\)

Lấp La Lấp Lánh
22 tháng 8 2021 lúc 22:19

a) \(16x^2-\left(1+\sqrt{3}\right)^2=0\Leftrightarrow\left(4x-1-\sqrt{3}\right)\left(4x+1+\sqrt{3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}4x-1-\sqrt{3}=0\\4x+1+\sqrt{3}=0\end{matrix}\right.\)

\(\Leftrightarrow x=\pm\dfrac{1+\sqrt{3}}{4}\)

b) \(x-2\sqrt{2x}+2=8\Leftrightarrow\left(\sqrt{x}-\sqrt{2}\right)^2=8\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}-\sqrt{2}=2\sqrt{2}\\\sqrt{x}-\sqrt{2}=-2\sqrt{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=3\sqrt{2}\\\sqrt{x}=-\sqrt{2}\end{matrix}\right.\)\(\Leftrightarrow x=18\)(do \(\sqrt{x}\ge0\ne-\sqrt{2}\))

 

nguyen giang
Xem chi tiết
SanKii Official
6 tháng 7 2018 lúc 10:51
https://i.imgur.com/1Np51ky.jpg
SanKii Official
6 tháng 7 2018 lúc 10:55
https://i.imgur.com/SHeGP2O.jpg
SanKii Official
6 tháng 7 2018 lúc 10:57
https://i.imgur.com/SZXeSTw.jpg