chứng minh rằng nếu a phần b < c phần d ( b< 0 , d>0 ) thi : a phần b < a+c phần b+d < c phần d
Mn giúp mình với. Cho a phần b = c phần d và a, b, c, d không = 0, a không = b, c không = d. Chứng minh rằng a - b phần b = c - d phần d
chứng tỏ rằng nếu a phần b nhỏ hơn c phần d (b lớn hơn 0, đ lớn hơn 0 ) thì a phần b nhỏ hơn a + c phần b+d nhỏ hơn c phần d
Ta có a/b<c/d
=> ad<bc
=>ad+ab<bc+ab
=> a(b+d)<b(c+a)
=>a/b<a+c/b+d
Lại có ad<bc
=> ad+cd<bc+cd
=>d(a+c)<c(b+d)
=>a+c/b+d<c/d
bạn ơi tại sao lại là thế mik tưởng là a nhân b cộng a nhân d chứ
Help me!!!
Cho a phần b = c phần d. Chứng minh:
a) a phần b = a+c phần b+d .
b) a-b phần b = c-d phần d .
c) a+b phần b = c+d phần d.
d) a phần a+b = c phần c+d ( a+b khác 0 và c+d khác 0 ).
e) a-b phần a+b = c-d phần c+d.
search mạn bn à. Mà bài này dễ CM mà công thức trong sách giáo khoa lớp 7 hả.......
cho tỉ lệ thức a phần b=c phần d(a-b ko bằng 0;c-d ko bằng 0)chứng minh a+b phần a-b=c+d phần c-d
\(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\\ \Leftrightarrow\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)
Ta có \(\dfrac{a}{b}\)= \(\dfrac{c}{d}\)=> a/c= b/d
áp dụng tính chất dãy tỉ số bằng nhau , ta có:
a/c=b/d= a+b/c+d (1)
áp dụng tính chất dãy tỉ số bằng nhau , ta có:
a/c=b/d= a-b/c-d (2)
từ (1) :(2) => a+b/c+d= a-b/c-d => a+b/a-b= c+d/c-d (đpcm)
bạn ghi ra vở là hiểu nhé
chứng tỏ rằng nếu a phần nhỏ hơn c phần d (b lớn hơn 0, đ lớn hơn 0 ) thì a phần b nhỏ hơn a + c phần b+d nho hon c phan d
hãy viết ba số hữu tỉ xen giữa âm 1 phần 3 và âm 1 phần 4
Câu 1: Tìm các số a,b,c, biết rằng:
a phần 2 = b phần 3 = c phần 4 và a2 -b2 + 2c2 = 108
Câu 2: Chứng minh rằng tỉ lệ thức a phần b = c phần d (a-b khác 0, c-d khác 0) ta có thể suy ra tỉ lệ thức a+b (trên) a-b = c+d (trên) c-d
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\Rightarrow\frac{q^2}{4}=\frac{b^2}{9}=\frac{2c^2}{32}=\frac{a^2-b^2+2c^2}{4-9+32}=\frac{108}{27}=4\)
=> \(\frac{a^2}{4}=4\Rightarrow a^2=4.4=16\Rightarrow a=+-4\)
=>\(\frac{b^2}{9}=4\Rightarrow b^2=4.9=36\Rightarrow b=+-6\)
=>\(\frac{2c^2}{32}=4\Rightarrow c^2=4.32:2=64\Rightarrow c=+-8\)
Câu 2 :
Ta có : \(\frac{a}{b}=\frac{c}{d}\) \(\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
\(\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
cho a phần b bằng c phần d chứng minh rằng a+b phần a-d bằng c+d phần c-d
Áp dụng t.c dtsbn:
\(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\\ \Leftrightarrow\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-b}{c-d}=\dfrac{a+b}{c+d}\)
\(\Leftrightarrow\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)
1. Cho a phần b > c phần d ( với a,b,c,d thuộc Z, b >0, d>0). Chứng tỏ ad > bc
2. Cho 1<a<b<7. Chứng tỏ rằng 1 phần 7< a phần b< 1
cho a phần b bằng c phần d chứng minh rằng a phần a-b bằng c phần c-d
Cho \(\frac{a}{b}=\frac{c}{d}\) chứng minh rằng \(\frac{a}{a-b}=\frac{c}{c-d}\)
Có \(\frac{a}{a-b}=\frac{c}{c-d}\Leftrightarrow\frac{a-b}{a}=\frac{c-d}{c}\Leftrightarrow\frac{a}{a}-\frac{b}{a}=\frac{c}{c}-\frac{d}{c}\Leftrightarrow1-\frac{b}{a}=1-\frac{d}{c}\)
\(\Rightarrow\frac{b}{a}=\frac{d}{c}hay\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\)
Đề bài cho \(\frac{a}{b}=\frac{c}{d}\) \(\Rightarrow b=c.\) Không thể \(ad=bc\Rightarrow\) Đề sai