Chứng tỏ rằng 7n-1 chia het cho 6 (mọi n thuộc N)
chứng minh rằng n(2n+1)(7n+1) chia hết cho 6 với mọi n thuộc N
Chứng minh rằng : n.(2n+1).(7n+1) chia hết cho 6. ( mọi n thuộc N )
vì 1 trong 2 thừa số n và 7n+1 là số chẵn]
=>n.(2n+1)(7n+1) \(⋮\)2
với n có dạng 3k thì n\(⋮\)3
với n có dạng 3k1 thì2n+1\(⋮\)3
với n cá dạng 3k+2 thì 7n+1\(⋮\)3
vậy n\(⋮\)3 với mọi n
Chứng minh rằng
n(2n+1)(7n+1) chia hết cho 6 với mọi n thuộc N
Chứng tỏ rằng với mọi n E N ta luôn có :
a) n . ( n + 1 ) . ( n + 5 ) chia hết cho 3
b) n . ( 2n + 1 ) . ( 7n + 1 ) chia hết cho 6
tìm n thuộc N,chứng minh rằng:
a,(n+10)(n+15)chia hết cho 2
b,n(n+1)(2n+1)chia hết cho 6
c,n(2n+1)(7n+1)chia hết cho 6 (với mọi n thuộc N)
a; (n + 10)(n + 15)
+ Nếu n là số chẵn ta có: n + 10 ⋮ 2 ⇒ (n + 10)(n + 15) ⋮ 2
+ Nếu n là số lẻ ta có: n + 15 là số chẵn
⇒ (n + 15) ⋮ 2 ⇒ (n + 10)(n + 15) ⋮ 2
Từ những lập luận trên ta có:
A = (n + 10)(n + 15) ⋮ 2 ∀ n \(\in\) N
chứng tỏ rằng với mọi m, n thuộc Z, nếu 5m +7n chia hết cho 19 thì 7m+6n cũng chia hết cho 19
42) a) Khi chia stn a cho 9,ta được số dư là 6.Hỏi số a có chia hết cho 3 không?
b) Khi chia stn a cho 12,ta được số dư là 9.Hỏi số a có chia hết cho 3 không? có chia hết cho 6 ko?
c) số 30.31.32.33.....40+111 có chia hết cho 37 không?
46)
a) Tích của 2 stn liên tiếp là 1 số chia hết cho 2
b) Với mọi n thuộc N , chứng tỏ rằng : n.(n+3) chia hết cho 2
c) với mọi n thuộc N ,chứng tỏ rằng :n^2+n+1 khong chia het cho 2
Bài 45 :
a ) Theo bài ra ta có :
a = 9.k + 6
a = 3.3.k + 3.2
\(\Rightarrow a⋮3\)
b ) Theo bài ra ta có :
a = 12.k + 9
a = 3.4.k + 3.3
\(\Rightarrow a⋮3\)
Vì : \(a⋮3\Rightarrow a⋮6\)
c ) Ta thấy :
30 x 31 x 32 x ...... x 40 + 111
= 37 x 30 x ....... x 40 + 37 x 3
\(\Rightarrow\left(30.31.32......40+111\right)⋮37\)
Bài 46 :
a ) số thứ nhất là n số thứ 2 là n+1
tích của chúng là
n(n+1)
nếu n = 2k ( tức n là số chẵn)
tích của chúng là
2k.(2k+1) thì rõ rảng số này chia hết cho 2 nên là sỗ chẵn
nếu n = 2k +1 ( tức n là số lẻ)
tích của chúng là
(2k+1)(2k+1+1) = (2k+1)(2k+2) = 2.(2k+1)(k+1) số này cũng chia hết cho 2 nên là số chẵn
Mà đã là số chẵn thì luôn chia hết cho 2 nên tích 2 stn liên tiếp luôn chia hết cho 2
b ) Nếu n là số lẻ thì : n + 3 là số chẵn
Mà : số lẻ nhân với số chẵn thì sẽ luôn chia hết cho 2
Nếu n là số chẵn thì :
n . ( n + 3 ) luôn chi hết cho 2
c ) Vì n ( n + 1 ) là tích của hai số tự nhiên liên tiếp nên có chữ số tận cùng là : 0 ; 2 ; 4 ; 6
Do đó n(n + 1 ) + 1 có tận cùng là : 1 ; 3 ; 7
Vì 1 ; 3 ; 7 không chia hết cho 2
Vậy n2 + n + 1 không chia hết cho 2
Chứng tỏ rằng: Với mọi n thuộc N; n-1
a. n(2n+1)(7n+1):2 và 3.
Chứng minh n . ( 2n + 7 ) . ( 7n + 1 ) chia hết cho 6 với mọi n thuộc N .