cho a+b+c=1 cmr √(5a+4) +√(5b+4b) +√(5c+4) ≥7
cho a,b,c >0,a+b+c=1
\(CMR:\sqrt{5a+4}+\sqrt{5b+4}+\sqrt{5c+4}>=7\)
Tìm trước khi hỏi :
Đề vòng 1 chuyên sư phạm 2016-2017 - Tài liệu - Đề thi - Diễn đàn Toán học
Witch Rose
a,b,c" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml"> nên
không âm vàa,b≥0⇒25ab+20(a+b)+16≥20(a+b)+16" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml">
⇔(5a+4)(5b+4)≥4(5a+5b+4)" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml">
⇔(5a+4+5b+4)2≥(2+5a+5b+4)2" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml">
⇔5a+4+5b+4≥2+9−5c=2+13−t2" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml">
Em nghĩ đề là \(a,b,c\ge0\) thì dấu "=" mới xảy ra chứ ạ?Nếu như thế thì có lẽ là như vầy:
Do \(a,b,c\ge0\) và \(a+b+c=1\Rightarrow0\le a;b;c\le1\) (1)
Ta sẽ c/m BĐT phụ: \(\sqrt{5a+4}\ge a+2\)
\(\Leftrightarrow5a+4\ge a^2+4a+4\)
\(\Leftrightarrow a^2-a\le0\Leftrightarrow a\left(a-1\right)\le0\Leftrightarrow0\le a\le1\) (đúng theo (1)
Tương tự với 2 BĐT còn lại và cộng theo vế ta được: \(VT\ge\left(a+b+c\right)+6=7^{\left(đpcm\right)}\)
cho 5a-b+2c/c=5b-2c+a/a=5c-2a+b/b(a,b,c>0).Tinh gtbt A=(4b+2a)*(4c+2b)*(4a+2c)/(5a-2b)*(5b-2c)*(5c-2a)
Cho a, b, c ≥ 0 thoả mãn a+b+c=1. Cmr: \(\sqrt{5a+4}+\sqrt{5b+4}+\sqrt{5c+4}\ge7\)
Ta có : \(\left\{{}\begin{matrix}a,b,c\ge0\\a+b+c=1\end{matrix}\right.\Rightarrow a\le1\Leftrightarrow a^2\le a\)
\(VT=\sqrt{4a+4.1+1}+\sqrt{4b+4.1+1}+\sqrt{4c+4.1+1}\ge\sqrt{4a^2+4a+1}+\sqrt{4b^2+4b+1}+\sqrt{4c^2+4c+1}\)
\(=2a+1+2b+1+2c+1=7\) .
Vậy đẳng thức được chứng minh . Dấu \("="\Leftrightarrow a=1;b=0;c=0\) và hoán vị
Bài 1: Cho a,b,c>0 thỏa a+b+c=1. CMR √5a+4+√5b+4+√5c+4≥75a+4+5b+4+5c+4≥7.
Bài 2: Cho a,b khác 0. CMR a2/b2 + b2/a2 +4 >= 3(a/b+b/a)
Bài 3: Tìm GTNN của Q=√2x2+2x+1+√2x2−8x+102x2+2x+1+2x2−8x+10 . ( Dùng bđt mincopxki).
Bài 4: Cho a,b>0. CMR ab2+ba2+16a+b≥5(1a+1bb)
Cho a, b, c là ba số thực không âm và thỏa mãn: a + b + c = 1. Chứng minh rằng 5 a + 4 + 5 b + 4 + 5 c + 4 ≥ 7
Vì a, b, c không âm và có tổng bằng 1 nên 0 ≤ a , b , c ≤ 1 ⇒ a ( 1 − a ) ≥ 0 b ( 1 − b ) ≥ 0 c ( 1 − c ) ≥ 0 ⇒ a ≥ a 2 b ≥ b 2 c ≥ c 2 ⇒ 5 a + 4 ≥ a 2 + 4 a + 4 = ( a + 2 ) 2 = a + 2 T ư ơ n g t ự : 5 b + 4 ≥ b + 2 ; 5 c + 4 ≥ c + 2 ⇒ 5 a + 4 + 5 b + 4 + 5 c + 4 ≥ ( a + b + c ) + 6 = 7 ( đ p c m )
Cho các số dương a,b,c thỏa mãn abc=1.CMR :\(\frac{1}{\sqrt{5a+4}}+\frac{1}{\sqrt{5b+4}}+\frac{1}{\sqrt{5c+4}}\le1..\)
ai k mình k lại [ chỉ 3 người đầu tiên mà trên 10 điểm hỏi đáp ]
Cho a; b; c là các số thực dương thỏa mãn abc=1. CMR:
\(A=\dfrac{1}{\sqrt{4+5a}}+\dfrac{1}{\sqrt{4+5b}}+\dfrac{1}{\sqrt{4+5c}}\le1\)
Mình nghĩ là làm phản chứng đó.
Cho a,b,c ko âm , và a+b+c=1
CMR \(\sqrt{5a+4}+\sqrt{5b+4}+\sqrt{5c+4}\ge7\)
Mn giải gấp hộ mk đc ko ạ?
Ta có: \(\hept{\begin{cases}a;b;c\ge0\\a+b+c=1\end{cases}}\Rightarrow0\le a;b;c\le1\Rightarrow\hept{\begin{cases}a^2\le a\\b^2\le b\\c^2\le c\end{cases}}\)
\(\sqrt{5a+4}+\sqrt{5b+4}+\sqrt{5c+4}\)
\(=\sqrt{a+4a+4}+\sqrt{b+4b+4}+\sqrt{c+4c+4}\)
\(\ge\sqrt{a^2+4a+4}+\sqrt{b^2+4b+4}+\sqrt{c^2+4c+4}=a+2+b+2+c+2=7\)
\("="\Leftrightarrow a;b;c\) là hoán vị của 0;0;1
Cho a,b,c>=0 thoả mãn a+b+c=1
Chứng minh rằng√5a+4+√5b+4+√5c+4>=7