Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
 Huyền Trang
Xem chi tiết
tthnew
15 tháng 3 2021 lúc 18:50

Ta có: 

\(2\left(2x^2+xy+2y^2\right)=3\left(x^2+y^2\right)+\left(x+y\right)^2\ge\dfrac{3}{2}\left(x+y\right)^2+1\left(x+y\right)^2=\dfrac{5}{2}\left(x+y\right)^2\)

\(\Rightarrow\sqrt{2x^2+xy+2y^2}\ge\dfrac{\sqrt{5}}{2}\left(x+y\right)\)

Gợi ý. Dùng cái trên.

 Huyền Trang
15 tháng 3 2021 lúc 17:20

Mọi người giúp mình với a :))

Ngọc Ngô
Xem chi tiết
alibaba nguyễn
20 tháng 9 2019 lúc 9:12

\(P=\sqrt{\frac{1}{36}\left(11a+7b\right)^2+\frac{59\left(a-b\right)^2}{36}}+\sqrt{\frac{1}{36}\left(7a+11b\right)+\frac{59\left(a-b\right)^2}{36}}\)

\(=\sqrt{\frac{1}{16}\left(3a+5b\right)^2+\frac{5\left(a-b\right)^2}{16}}+\sqrt{\frac{1}{16}\left(5a+3b\right)^2+\frac{5\left(a-b\right)^2}{16}}\)

\(\ge\frac{1}{6}\left(11a+7b\right)+\frac{1}{6}\left(7a+11b\right)+\frac{1}{4}\left(3a+5b\right)+\frac{1}{4}\left(5a+3b\right)\)

\(=5\left(a+b\right)=5.2016=10080\)

Nguyễn Linh Chi
23 tháng 9 2019 lúc 14:53

alibaba nguyễn Em kiểm tra lại bài làm của mình nhé! 

tth_new
23 tháng 9 2019 lúc 18:37

Nguyễn Linh Chi haha, em nhìn ra rối, chỗ dấu "=" thứ 2 phải sửa lại thành dấu "+" ,còn anh ấy phân tích có sai chỗ nào thì em ko biết:D (hình như là đúng)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 4 2018 lúc 14:29

Ta có 

P = x 2 4 + 8 y + y 2 1 + x = x 2 4 + 8 y + 2 y 2 4 + 4 x ≥ x + 2 y 2 8 + 4 x + 2 y

Dấu “=” xảy ra khi x = 2y

Đặt t = x + 2y; t ≥ 8 . Khi đó  P ≥ t 2 8 + 4 t

Xét hàm số  f t = t 2 8 + 4 t , t ∈ [ 8 ; + ∞ )

Suy ra f(t) đồng biến trên [ 8 ; + ∞ )  nên  f t ≥ f 8 = 8 5 Vậy m a x P = 8 5 ⇔ x = 4 ; y = 2

Đáp án A

Nguyễn Thùy Linh
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 4 2018 lúc 6:40

Đáp án B.

Từ giả thiết, suy ra

Xét hàm số f ( t ) = 5 t - 1 3 t + t  trên ℝ .

Đạo hàm  f ' ( t ) = 5 t . ln 5 - ln 3 3 t + 1 > 0 ,   ∀ t ∈ ℝ ⇒ hàm số f ( t ) luôn đồng biến trên .

Suy ra

Do y > 0 nên x + 1 x - 2 > 0 ⇔ [ x > 2 x < - 1 . Mà x > 0  nên  x > 2 .

Từ đó T = x + y = x + x + 1 x - 2 . Xét hàm số g ( x ) = x + x + 1 x - 2 trên 2 ; + ∞ .

Đạo hàm

Lập bảng biến thiên của hàm số trên  2 ; + ∞ , ta thấy min   g ( x ) = g ( 2 + 3 ) = 3 + 2 3 .

Vậy T m i n = 3 + 2 3 khi x = 2 + 3  và  x = 1 + 3 .

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 6 2019 lúc 10:17

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
6 tháng 1 2018 lúc 10:30

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 3 2019 lúc 6:21

Đáp án B.

Từ giả thiết, suy ra 5 x + 2 y + 1 3 x y - 1 + x + 1 = 5 x y - 1 + 1 3 x + 2 y + x y - 2 y  

⇔ 5 x + 2 y - 1 3 x + 2 y + x + 2 y = 5 x y - 1 - 1 3 x y - 1 + ( x y - 1 )  (1)

Xét hàm số f ( t ) = 5 t - 1 3 t + t  trên ℝ .

Đạo hàm f ' ( t ) = 5 t . ln 5 + ln 3 3 t + 1 > 0 , ∀ t ∈ ℝ ⇒ hàm số f (t) luôn đồng biến trên  ℝ .

Suy ra  1 ⇔ f ( x + 2 y ) = f ( x y - 1 ) ⇔ x + 2 y = x y - 1 ⇔ x + 1 = y ( x - 2 )

y = x + 1 x - 2

Do y > 0  nên x + 1 x - 2 > 0 ⇔ x > 2 x < - 1  . Mà x > 0 nên x > 2.

Từ đó T = x + y = x + x + 1 x - 2 . Xét hàm số g ( x ) = x + x + 1 x - 2  trên 2 ; + ∞ .

Đạo hàm g ' ( x ) = 1 - 3 x - 2 2 > 0 , g ' ( x ) = 0 ⇔ ( x - 2 ) 2 = 3  

⇔ x = 2 + 3   ( t m ) x = 2 - 3   ( L ) . Lập bảng biến thiên của hàm số trên 2 ; + ∞ , ta thấy m i n   g ( x ) = g ( 2 + 3 ) = 3 + 2 3 .

Vậy T m i n = 3 + 2 3  khi x = 2 + 3  và y = 1 + 3 .

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 1 2018 lúc 12:46

Từ giả thiết ta suy ra

Xét hàm số  f ( t ) = 5 t - 1 3 t + t   với  t   ∈ ℝ ,   f ' ( t ) = 5 t . ln 5 + 3 - t . ln 3 + 1 > 0 ;   ∀ t ∈ ℝ

Suy ra y= f( t) là hàm số đồng biến trên R mà từ ( * ) suy ra

f (x+ 2y) =f( xy-1)  hay x+ 2y= xy-1

với x>0 suy ra y>1.

Khi đó

 

Xét hàm số

  f ( y ) = y 2 + y + 1 y - 1   t r ê n   1 ; + ∞ f ' y = y 2 - 2 y - 2 y - 1 2 = 0 ⇔ y = ± 1 + 3 f 1 + 3 = 3 + 2 3 ;   lim y → 1 f ( y ) = lim y → + ∞ f ( y ) = + ∞

Do đó, giá trị nhỏ nhất của hàm số là  3 + 2 3 .

Vậy kết quả là  3 + 2 3

Chọn B.