Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen don
Xem chi tiết
Anime boy
12 tháng 11 2015 lúc 21:23

**** đi rồi tớ giải cho

Nguyễn Linh Chi
Xem chi tiết
zZz Cool Kid_new zZz
15 tháng 6 2019 lúc 9:08

a.

Do \(x^2;y^2\) là các số chính phương nên chia cho 4 dư 0 hoặc 1 nên  \(x^2-y^2\) chia 4 dư 0;1;3 mà  \(1998\) chia 4 dư 2 nên PT vô nghiệm.

b.

Do \(x^2;y^2\) là các số chính phương nên chia cho 4 dư 0 hoặc 1 nên \(x^2+y^2\) chia 4 dư 0;1;2 mà \(1999\) chia 4 dư 3 nên PT vô nghiệm

T.Ps
15 tháng 6 2019 lúc 9:10

#)Giải :

VD1:

a) Ta thấy x2,y2 chia cho 4 chỉ dư 0,1

nên x2 - y2 chia cho 4 có số dư là 0,1,3. Còn vế phải chia cho 4 có số dư là 2

=> Phương trình không có nghiệm nguyên

b) Ta thấy x2 + y2 chia cho 4 có số dư là 0,1,2. Còn vế phải 1999 chia cho 4 dư 3 

=> Phương trình không có nghiệm nguyên

zZz Cool Kid_new zZz
15 tháng 6 2019 lúc 9:13

\(9x+2=y^2+y\)

\(\Leftrightarrow9x+2=y\left(y+1\right)\)

Dễ thấy VT có dạng \(3k+2\) nên VP cũng có dạng \(3k+2\Rightarrow y\) có dạng \(3k+1\) với \(k\in Z\)

Thay vào PT thì ta có:

\(9x+2=\left(3k+1\right)\left(3k+2\right)\)

\(\Leftrightarrow9x+2=9k^2+9k+2\)

\(\Leftrightarrow9x=9k\left(k+1\right)\)

\(\Leftrightarrow x=k\left(k+1\right)\)

Vậy \(x=k\left(k+1\right);y=3k+1\) với k là số nguyên bất kỳ.

nguyễn thị hồng hạnh
Xem chi tiết
tth_new
Xem chi tiết
Phạm Hạnh Nguyên Đinh
Xem chi tiết
Phạm Thùy Linh
Xem chi tiết
Phan...............
Xem chi tiết
Akai Haruma
10 tháng 7 2021 lúc 11:39

Lời giải:

Giả sử pt đã có nghiệm nguyên.
Ta biết rằng 1 số chính phương khi chia 4 dư $0,1$

Mà $x^2+y^2+z^2=2015\equiv 3\pmod 4$ nên $(x^2,y^2,z^2)$ chia $4$ dư $1,1,1$. Do đó $x,y,z$ đều lẻ.

Đặt $x=2m+1; y=2n+1, z=2p+1$ với $m,n,p$ nguyên

$x^2+y^2+z^2=2015$

$\Leftrightarrow (2m+1)^2+(2n+1)^2+(2p+1)^2=2015$

$\Leftrightarrow 4m(m+1)+4n(n+1)+4p(p+1)=2012$

$\Leftrightarrow m(m+1)+n(n+1)+p(p+1)=503$

Điều này vô lý vì mỗi số $m(m+1), n(n+1), p(p+1)$ đều chẵn.

Vậy điều giả sử sai, hay pt đã cho không có nghiệm nguyên.

Trịnh Minh Hiếu
Xem chi tiết
Lan Nhung Nguyễn
Xem chi tiết