Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Sir Nghi
Xem chi tiết
bui duy phu
16 tháng 7 2023 lúc 21:28

a) Ta có:

2A=2.(12+122+123+...+122020+122021)2�=2.12+122+123+...+122  020+122  021

2A=1+12+122+123+...+122019+1220202�=1+12+122+123+...+122  019+122  020

Suy ra: 2A−A=(1+12+122+123+...+122019+122020)2�−�=1+12+122+123+...+122  019+122  020

                             −(12+122+123+...+122020+122021)−12+122+123+...+122  020+122  021

Do đó A=1−122021<1�=1−122021<1.

Lại có B=13+14+15+1360=20+15+12+1360=6060=1�=13+14+15+1360=20+15+12+1360=6060=1.

Vậy A < B.

 

Nguyễn Đức Duệ
Xem chi tiết
Akai Haruma
29 tháng 4 2022 lúc 1:05

Lời giải:

$6A=\frac{6^{2021}+6}{6^{2021}+1}=1+\frac{5}{6^{2021}+1}>1+\frac{5}{6^{2022}+1}$
$=\frac{6^{2022}+6}{6^{2022}+1}=6.\frac{6^{2021}+1}{6^{2022}+1}=6B$

$\Rightarrow A>B$

quy pham
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 6 2023 lúc 23:09

loading...

 

Hồng Phong Đoàn
Xem chi tiết
Akai Haruma
30 tháng 4 2023 lúc 22:45

Lời giải:
$10A=\frac{10^{2021}-10}{10^{2021}-1}=\frac{10^{2021}-1-9}{10^{2021}-1}$

$=1-\frac{9}{10^{2021}-1}>1$

$10B=\frac{10^{2022}+10}{10^{2022}+1}=\frac{10^{2022}+1+9}{10^{2022}+1}$

$=1+\frac{9}{10^{2022}+1}<1$

$\Rightarrow 10A> 1> 10B$

Suy ra $A> B$

Lâm tôm
Xem chi tiết
Phía sau một cô gái
16 tháng 5 2022 lúc 22:03

Ta có:

\(10A=\dfrac{10\left(10^{2020}+1\right)}{10^{2021}+1}=\dfrac{10^{2021}+10}{10^{2021}+1}=1+\dfrac{9}{10^{2021}+1}\)

\(10B=\dfrac{10\left(10^{2021}+1\right)}{10^{2022}+1}=\dfrac{10^{2022}+10}{10^{2022}+1}=1+\dfrac{9}{10^{2022}+1}\)

⇒ \(10A>10B\) ( vì \(\dfrac{9}{10^{2021}+1}>\dfrac{9}{10^{2022}+1}\) )

Suy ra:  \(A>B\)

Hà Trí Kiên
Xem chi tiết
Akai Haruma
13 tháng 6 2023 lúc 18:23

Lời giải:

Ta thấy: $\frac{2021^2+1}{2021}=2021+\frac{1}{2021}< 2022< 2022+\frac{1}{2022}=\frac{2022^2+1}{2022}$

$\Rightarrow \frac{2021}{2021^2+1}> \frac{2022}{2022^2+1}$

Đỗ Hải Yến
Xem chi tiết
hay le
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 6 2023 lúc 10:53

loading...

Dương Minh Hằng
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 3 2023 lúc 13:19

a: \(17A=\dfrac{17^{19}+17}{17^{19}+1}=1+\dfrac{16}{17^{19}+1}\)

\(17B=\dfrac{17^{18}+17}{17^{18}+1}=1+\dfrac{16}{17^{18}+1}\)

mà 17^19+1>17^18+1

nên A<B

b: \(2C=\dfrac{2^{2021}-2}{2^{2021}-1}=1-\dfrac{1}{2^{2021}-1}\)

\(2D=\dfrac{2^{2022}-2}{2^{2022}-1}=1-\dfrac{1}{2^{2022}-1}\)

2^2021-1<2^2022-1

=>1/2^2021-1>1/2^2022-1

=>-1/2^2021-1<-1/2^2022-1

=>C<D