So sánh:
A = \(\dfrac{2^{2020}-1}{2^{2021}-1}\) và B = \(\dfrac{2^{2021}-1}{2^{2022}-1}\)
1. So sánh
a) \(A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2020}}+\dfrac{1}{2^{2021}}\) và B= \(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{13}{60}\)
b) \(C=\dfrac{2019}{2021}+\dfrac{2021}{2022}\) và \(D=\dfrac{2020+2022}{2019+2021}.\dfrac{3}{2}\)
a) Ta có:
2A=2.(12+122+123+...+122020+122021)2�=2.12+122+123+...+122 020+122 021
2A=1+12+122+123+...+122019+1220202�=1+12+122+123+...+122 019+122 020
Suy ra: 2A−A=(1+12+122+123+...+122019+122020)2�−�=1+12+122+123+...+122 019+122 020
−(12+122+123+...+122020+122021)−12+122+123+...+122 020+122 021
Do đó A=1−122021<1�=1−122021<1.
Lại có B=13+14+15+1360=20+15+12+1360=6060=1�=13+14+15+1360=20+15+12+1360=6060=1.
Vậy A < B.
so sánh 2 phân số:
A=\(\dfrac{6^{2020}+1}{6^{2021}+1}\) với B=\(\dfrac{6^{2021}+1}{6^{2022}+1}\)
Lời giải:
$6A=\frac{6^{2021}+6}{6^{2021}+1}=1+\frac{5}{6^{2021}+1}>1+\frac{5}{6^{2022}+1}$
$=\frac{6^{2022}+6}{6^{2022}+1}=6.\frac{6^{2021}+1}{6^{2022}+1}=6B$
$\Rightarrow A>B$
a) tìm x :\(\dfrac{2}{1.4}x+\dfrac{2}{4.7}x+\dfrac{2}{7.10}x+....+\dfrac{2}{31.344}x=10\)
b)so sánh hai phân số sau : A=\(\dfrac{6^{2020}+1}{6^{2021}+1}\)và B=\(\dfrac{6^{\text{2021}}+1}{\text{6}^{\text{2022}}+1}\)
ét o ét giúp với ạ
Cho A = \(\dfrac{10^{2020}-1}{10^{2021}-1}\) và B = \(\dfrac{10^{2021}+1}{10^{2022}+1}\)
So sánh A và B
Lời giải:
$10A=\frac{10^{2021}-10}{10^{2021}-1}=\frac{10^{2021}-1-9}{10^{2021}-1}$
$=1-\frac{9}{10^{2021}-1}>1$
$10B=\frac{10^{2022}+10}{10^{2022}+1}=\frac{10^{2022}+1+9}{10^{2022}+1}$
$=1+\frac{9}{10^{2022}+1}<1$
$\Rightarrow 10A> 1> 10B$
Suy ra $A> B$
So sánh A và B:
A= \(\dfrac{10^{2020}+1}{10^{2021}+1}\) B=\(\dfrac{10^{2021}+1}{10^{2022}+1}\)
Giúp mình với!
Ta có:
\(10A=\dfrac{10\left(10^{2020}+1\right)}{10^{2021}+1}=\dfrac{10^{2021}+10}{10^{2021}+1}=1+\dfrac{9}{10^{2021}+1}\)
\(10B=\dfrac{10\left(10^{2021}+1\right)}{10^{2022}+1}=\dfrac{10^{2022}+10}{10^{2022}+1}=1+\dfrac{9}{10^{2022}+1}\)
⇒ \(10A>10B\) ( vì \(\dfrac{9}{10^{2021}+1}>\dfrac{9}{10^{2022}+1}\) )
Suy ra: \(A>B\)
\(\dfrac{2021}{2021^2+1}và\dfrac{2022}{2022^2+1}\)so sánh
Lời giải:
Ta thấy: $\frac{2021^2+1}{2021}=2021+\frac{1}{2021}< 2022< 2022+\frac{1}{2022}=\frac{2022^2+1}{2022}$
$\Rightarrow \frac{2021}{2021^2+1}> \frac{2022}{2022^2+1}$
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{2021^2}\). So sánh A và \(\dfrac{2020}{2021}\)
Cho \(A=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2022}\)
Và \(B = \dfrac{2021}{1}+\dfrac{2020}{2}+\dfrac{2019}{3}+...+\dfrac{1}{2021}\)
Tính B/A
so sánh
a)A=\(\dfrac{17^{18}+1}{17^{19}+1}\)và B=\(\dfrac{17^{17}+1}{17^{18}+1}\)
b)C=\(\dfrac{2^{2020}-1}{2^{2021}-1}\)và D=\(\dfrac{2^{2021}-1}{2^{2022}-1}\)
c)\(\dfrac{13579}{34567}\)và \(\dfrac{13580}{34569}\)
Giúp mình với nhé😌
a: \(17A=\dfrac{17^{19}+17}{17^{19}+1}=1+\dfrac{16}{17^{19}+1}\)
\(17B=\dfrac{17^{18}+17}{17^{18}+1}=1+\dfrac{16}{17^{18}+1}\)
mà 17^19+1>17^18+1
nên A<B
b: \(2C=\dfrac{2^{2021}-2}{2^{2021}-1}=1-\dfrac{1}{2^{2021}-1}\)
\(2D=\dfrac{2^{2022}-2}{2^{2022}-1}=1-\dfrac{1}{2^{2022}-1}\)
2^2021-1<2^2022-1
=>1/2^2021-1>1/2^2022-1
=>-1/2^2021-1<-1/2^2022-1
=>C<D