tìm tất cả số hữu tỉ x sao cho x+1/x là số nguyên
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho tam thức bậc hai f(x) = x^2 - 20x + 11.
a) Tìm tất cả các số hữu tỉ x sao cho căn f(x) là một số hữu tỉ.
b) Tìm tất cả các số nguyên dương x sao cho căn f(x) là một số nguyên dương.
Tìm tất cả các số hữu tỉ x sao cho \(\frac{5x+1}{x+1}\)là số nguyên
Ta có: \(\frac{5x+1}{x+1}=\frac{5x+5-4}{x+1}\)
\(=\frac{5\left(x+1\right)-4}{x+1}\)
\(=\frac{5\left(x+1\right)}{x+1}-\frac{4}{x+1}\)
\(=5-\frac{4}{x+1}\)
Vì 5 là số nguyên
=> Để 5x+1/x+1 là số nguyên thì 4/x+1 phải là số nguyên
=> 4 chia hết cho x + 1
=> x + 1 thuộc Ư(4)
=> x + 1 thuộc { 1;-1;2;-2;4;-4 }
=> x thuộc { 2;0;3;-1;5;-3 }
Gọi số đó là A
\(\frac{5x+1}{x+1}=\frac{4x+x+1}{x+1}\)=\(\frac{4x+4-4+x+1}{x+1}=\frac{\left(x+1\right)+\left(x+1\right)+\left(x+1\right)+\left(x+1\right)-4+\left(x+1\right)}{x+1}\)
Vậy để A là sô nguyên thì 4 phải chia hết x+1 và x+1 thuộc ước của 4
Ư(4)={+4;+1;+2)
x+1=+1;+2;+4
Vay x=0;2;3;-1;6;-2.
TUi ko biết số hửu tỉ nên chỉ cần ghép thêm vài sô thuộc ước của 4 và la sô hửu tỉ là được
Ta có :
\(\frac{5x+1}{x+1}=\frac{5\left(x+1\right)-4}{x+1}=5-\frac{4}{x+1}\)
Để \(\frac{5x+1}{x+1}\in Z\) thì \(\frac{4}{x+1}\in Z\)
\(\Rightarrow x+1\inƯ_{\left(4\right)}=\left\{\pm1;\pm2;\pm4\right\}\)
x+1 | 1 | -1 | 2 | -2 | 4 | -4 |
x | 0 | -2 | 1 | -3 | 3 | -5 |
Vậy \(x\in\left\{0;-2;1;-3;3;-5\right\}\)
Tìm tất cả số nguyên n sao cho đa thức P(x)=x(x+n)^2-4 có nghiệm hữu tỉ?
Tìm tất cả các số nguyên x để số hữu tỉ A=x+1/x-2(x khác 2) có giá trị là số nguyên
\(A=\dfrac{x+1}{x-2}=\dfrac{x-2+3}{x-2}=1+\dfrac{3}{x-2}\)
A là số nguyên khi: \(\dfrac{3}{x-2}\) nguyên
3 ⋮ x - 2
\(\Rightarrow x-2\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
\(\Rightarrow x\in\left\{3;1;5;-1\right\}\)
Tìm tất cả các số nguyên x để số hữu tỉ \(A=\dfrac{x+1}{x-2}\left(x\ne2\right)\) có giá trị là số nguyên
Ta có: \(A=\dfrac{x+1}{x-2}=\dfrac{x-2+3}{x-2}=\dfrac{x-2}{x-2}+\dfrac{3}{x-2}=1+\dfrac{3}{x-2}\)
Để A là số nguyên thì \(x-2\inƯ\left(3\right)=\left\{-1,-3,1,3\right\}\)
Ta có bảng giá trị:
x - 2 | -1 | -3 | 1 | 3 |
x | 1 (tm) | -1 (tm) | 3 (tm) | 5 (tm) |
Vậy ...
Ta có : \(A=\dfrac{x+1}{x-2}=\dfrac{x-2+3}{x-2}\)
\(\Rightarrow A=1+\dfrac{3}{x-2}\)
Vì x là số nguyên nên để A cũng là số nguyên thì : \(\dfrac{3}{x-2}\in Z\)
\(\Rightarrow3⋮\left(x-2\right)\)
\(\Rightarrow\left(x-2\right)\inƯ\left(3\right)\)
Do đó ta có bảng :
x-2 | 1 | 3 | -1 | -3 |
x | 3 | 5 | 1 | -1 |
Vậy..........
Tìm tất cả các số hữu tỉ dương x,y thỏa mãn x+1/y và y+1/x là số nguyên dương
Tìm tất cả số hữu tỉ x, y > 0 thỏa mãn x + 1/y và y + 1/x đều là các số nguyên
Tìm tất cả các bộ số nguyên dương (x;y;z) sao cho \(\frac{x+y\sqrt{2015}}{y+x\sqrt{2015}}\) là số hữu tỉ và \(x^2+y^2+z^2\) là số nguyên tố
Xửa đề:
\(\frac{x-y\sqrt{2015}}{y-z\sqrt{2015}}=\frac{m}{n}\) (vơi m, n thuộc Z)
\(\Leftrightarrow xn-ym=\left(yn-zm\right)\sqrt{2015}\)
\(\Leftrightarrow\hept{\begin{cases}xn-ym=0\\yn-zm=0\end{cases}}\)
\(\Rightarrow\frac{x}{y}=\frac{m}{n}=\frac{y}{z}\)
\(\Rightarrow xz=y^2\)
\(\Rightarrow x^2+y^2+z^2=x^2+2xz+z^2-y^2=\left(x+z+y\right)\left(x+z-y\right)\)
\(\Rightarrow\orbr{\begin{cases}x+y+z=1\left(l\right)\\x+z-y=1\end{cases}}\)
\(\Rightarrow x+z=y+1\)
\(\Leftrightarrow x^2+2xz+z^2=y^2+2y+1\)
\(\Leftrightarrow x^2+\left(y-1\right)^2+z^2=2\)
\(\Rightarrow x=y=z=1\)
tìm tất cả các số hữu tỉ x sao cho giá trị biểu thức x^2 + x + 6 là một số chính phương