Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Đình Hải Phong
Xem chi tiết
HT.Phong (9A5)
28 tháng 10 2023 lúc 10:14

Theo BĐT cosi ta có:

\(3a+5b\ge2\sqrt{3a\cdot5b}\)

\(\Leftrightarrow3a+5b\ge2\sqrt{15ab}\)

\(\Leftrightarrow12\ge2\sqrt{15ab}\)

\(\Leftrightarrow\sqrt{15ab}\le\dfrac{12}{2}\)

\(\Leftrightarrow\sqrt{15ab}\le6\)

\(\Leftrightarrow15ab\le36\)

\(\Leftrightarrow ab\le\dfrac{36}{15}\)

\(\Leftrightarrow ab\le\dfrac{12}{5}\)

\(\Rightarrow P\le\dfrac{12}{5}\)

Vậy: \(P_{max}=\dfrac{12}{5}\)

Viết Tùng Nguyễn
28 tháng 10 2023 lúc 10:30
Để tìm giá trị lớn nhất của tích P = ab, ta có thể sử dụng phương pháp đạo hàm. Đầu tiên, ta sẽ giải hệ phương trình 3a + 5b = 12 để tìm giá trị của a và b. 3a + 5b = 12 Tiếp theo, ta sẽ giải phương trình trên theo a: 3a = 12 - 5b a = (12 - 5b)/3 Sau đó, ta sẽ thay giá trị của a vào biểu thức tích P = ab: P = ((12 - 5b)/3) * b Tiếp theo, ta sẽ đạo hàm của P theo b: dP/db = (12 - 5b)/3 - (5b)/3 Để tìm giá trị lớn nhất của P, ta sẽ giải phương trình dP/db = 0: (12 - 5b)/3 - (5b)/3 = 0 12 - 5b - 5b = 0 12 - 10b = 0 10b = 12 b = 12/10 b = 6/5 Sau đó, ta sẽ thay giá trị của b vào biểu thức tích P = ab: P = ((12 - 5(6/5))/3) * (6/5) P = (12 - 6)/3 * 6/5 P = 6/3 * 6/5 P = 12/5 Vậy, giá trị lớn nhất của tích P = ab là 12/5.... 
Nguyễn Ngọc Linh
Xem chi tiết
ミ★ɮεşէ Vαℓɦεїŋ★彡
27 tháng 3 2020 lúc 16:19

\(12=3a+5b\ge2\sqrt{3a.5b}=2\sqrt{15ab}\Rightarrow ab\le\frac{36}{15}=\frac{12}{5}\)

Dấu " = " xảy ra khi \(3a=5b;3a+5b=12\Leftrightarrow a=2;b=\frac{6}{5}\)

Nguồn: Mr Lazy

Khách vãng lai đã xóa
Trần Thu Thảo
Xem chi tiết
Minh Triều
Xem chi tiết
Lyzimi
17 tháng 9 2015 lúc 19:55

trong câu tương tự bài của Mr Lazy đấy triều

Phạm Văn Khánh
Xem chi tiết
Mr Lazy
6 tháng 8 2015 lúc 8:42

\(12=3a+5b\ge2\sqrt{3a.5b}=2\sqrt{15ab}\Rightarrow ab\le\frac{36}{15}=\frac{12}{5}\)

Dấu "=" xảy ra khi \(3a=5b;\text{ }3a+5b=12\Leftrightarrow a=2;\text{ }b=\frac{6}{5}\)

Lê Ngọc Gia Hân
Xem chi tiết
Rhider
18 tháng 2 2022 lúc 15:35

\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\Leftrightarrow a+b-2\sqrt{ab}\ge0\Leftrightarrow a+b\ge2\sqrt{ab}\Leftrightarrow\frac{a+b}{2}\ge\sqrt{ab}\)

Đỗ Tuệ Lâm
18 tháng 2 2022 lúc 15:38

undefined

Phạm khang
22 tháng 2 2022 lúc 10:05

Cho xin Zalo với

TheRedSuns
Xem chi tiết
Em là Sky yêu dấu
17 tháng 6 2017 lúc 9:10

​​BÀI 1 : cho x+y=2 ................

GIẢI :

TA CÓ :x2+y2\(\ge\)\(\frac{\left(x+2\right)^2}{2}\)=2

MIN =2 khi x=y=1

BÀI 2: cho a,b>0 và ...........

GIẢI:

12=3a+5b   \(\ge\)2\(\sqrt{3a.5b}\)

\(=2\sqrt{15ab}=>ab\le\frac{36}{15}=\frac{12}{15}\)

dấu "=" xảy ra khi 3a=5b,3a+5b=12

<=>a=2,b=6/5

tk mk nha !\(\phi\Phi\alpha\omega\Phi\varepsilon\partial\beta\)

Lê Thiện Thanh
Xem chi tiết
Lê Phương Giang
15 tháng 2 2016 lúc 21:21

ôi dào !dễ ợt ! cô em mới cho học ngày hôm qua !k đi rùi em trình bày cho cách làm !

tru
Xem chi tiết
alibaba nguyễn
2 tháng 9 2016 lúc 9:42

Ta có 15P = 3a5b \(\le\)\(\frac{9a^2+25b^2}{2}\)

\(\frac{\left(3a+5b\right)^2-30ab}{2}\)

=> 30P \(\le\)\(\frac{12^2}{2}\)

=> P \(\le\)\(\frac{12}{5}\)

Đạt được khi a = 2; b = \(\frac{6}{5}\)