Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
lý canh hy
Xem chi tiết
lý canh hy
Xem chi tiết
Anh Khương Vũ Phương
Xem chi tiết
Lightning Farron
5 tháng 5 2017 lúc 17:48

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(A=\dfrac{1}{x+1}+\dfrac{1}{y+1}+\dfrac{1}{z+1}\)

\(\ge\dfrac{\left(1+1+1\right)^2}{x+y+z+3}=\dfrac{3^2}{3+3}=\dfrac{9}{6}=\dfrac{3}{2}\)

Đẳng thức xảy ra khi \(x=y=z=1\)

Trang Lê
Xem chi tiết
Thắng Nguyễn
13 tháng 6 2017 lúc 18:49

Câu hỏi của s2 Lắc Lư s2 - Toán lớp 9 - Học toán với OnlineMath

Phan Thị Khánh Ly
Xem chi tiết
forever young
Xem chi tiết
Đỗ Thị Trà My
Xem chi tiết
zZz Cool Kid_new zZz
12 tháng 6 2020 lúc 15:29

\(P=\frac{1}{x\left(x+1\right)}+\frac{1}{y\left(y+1\right)}+\frac{1}{z\left(z+1\right)}\)

\(\ge3\sqrt[3]{\frac{1}{xyz\left(x+1\right)\left(y+1\right)\left(z+1\right)}}\)

Mà theo BĐT AM - GM ta có tiếp:

\(xyz\le\left(\frac{x+y+z}{3}\right)^3=1\)

\(\left(x+1\right)\left(y+1\right)\left(z+1\right)\le\left(\frac{x+y+z+3}{3}\right)^3=8\)

\(\Rightarrow P\le\frac{3}{2}\)

Đẳng thức xảy ra tại x=y=z=1

Vậy..................

Khách vãng lai đã xóa
Nguyễn Việt Hoàng
Xem chi tiết
Tran Le Khanh Linh
25 tháng 2 2020 lúc 9:21

Áp dụng BĐT
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{a}{b}+\frac{a}{c}\right)\ge9\)

Trong đó: a=xy; b=yz; c=zx

\(\Rightarrow\left(xy+yz+zx\right)\left(\frac{1}{zy}+\frac{1}{yz}+\frac{1}{zx}\right)\ge9\)(*)

Áp dụng BĐT Cô-si

\(x^2+y^2\ge2xy\left(x>0;y>0\right)\left(1\right)\)

\(y^2+z^2\ge2yz\left(y>0;z>0\right)\left(2\right)\)

\(z^2+x^2\ge2xz\left(x>0;z>0\right)\left(3\right)\)

Cộng từng vế của (1);(2);(3) ta được: \(x^2+y^2+z^2\ge xy+yz+zx\)(**)

Từ (*);(**)

\(\Rightarrow\left(x^2+y^2+z^2\right)\cdot A\ge\left(xy+yz+zx\right)\cdot A\ge9\)

\(\Rightarrow3A\ge9\)

\(\Rightarrow A\ge3\)

\(\Rightarrow MinA=3\Leftrightarrow x=y=z\)

Khách vãng lai đã xóa
Nguyễn Việt Hoàng
25 tháng 2 2020 lúc 9:24

Quỳnh Mơn you nhìu nha ! May quá

Khách vãng lai đã xóa
Trí Tiên
25 tháng 2 2020 lúc 11:26

Áp dụng BĐT Svacxo cho 3 số dương ta được :

\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\ge\frac{\left(1+1+1\right)^2}{xy+z+zx}\ge\frac{9}{x^2+y^2+z^2}=\frac{9}{3}=3\)

( Do BĐT : \(xy+yz+zx\ge x^2+y^2+z^2\) )

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=1\)

Khách vãng lai đã xóa
Lương Huyền Ngọc
Xem chi tiết
Đinh Đức Hùng
3 tháng 11 2018 lúc 18:05

Đặt \(\left(x;y;z\right)=\left(a^3;b^3;c^3\right)\) Do \(xyz=1\Rightarrow abc=1\)

Ta có \(M=\frac{1}{a^3+b^3+1}+\frac{1}{b^3+c^3+1}+\frac{1}{a^3+c^3+1}\)

Cần chứng minh \(a^3+b^3\ge ab\left(a+b\right)\) \(BĐT\Leftrightarrow\left(a+b\right)\left(a-b\right)^2\ge0\left(true\right)\)

\(\Rightarrow\frac{1}{a^3+b^3+1}\le\frac{1}{ab\left(a+b\right)+1}=\frac{abc}{ab\left(a+b+c\right)}=\frac{c}{a+b+c}\)

Tương tự cộng lại ra ĐPCM