Đặt \(1+x=a\) ; \(1+y=b\) ; \(1+z=c\)
\(\Rightarrow a+b+c\le6\)\(\Rightarrow\frac{1}{a+b+c}\ge6\)
Lại có :\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(a+b+c\right)\ge9\)(áp dụng bdt Schwartz)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\ge\frac{9}{6}=\frac{3}{2}\)
Vậy Min A = \(\frac{3}{2}\)khi x = y = z = 1