Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
prayforme
Xem chi tiết
qwerty
4 tháng 6 2017 lúc 8:35

a) \(\sqrt{15+2\sqrt{5}-\sqrt{21-4\sqrt{5}}}\)

\(=\sqrt{15+2\sqrt{5}-\sqrt{\left(1-2\sqrt{5}\right)^2}}\)

\(=\sqrt{15+2\sqrt{5}-\left(2\sqrt{5}-1\right)}\)

\(=\sqrt{15+2\sqrt{5}-\left(2\sqrt{5}-1\right)}\)

\(=\sqrt{15+2\sqrt{5}-2\sqrt{5}+1}\)

\(=\sqrt{16}\)

\(=4\)

b) \(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)

\(=\sqrt[4]{5-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)

\(=\sqrt[4]{5-\sqrt{3-\sqrt{\left(3-2\sqrt{5}\right)^2}}}\)

\(=\sqrt[4]{5-\sqrt{3-\left(2\sqrt{5}-3\right)}}\)

\(=\sqrt[4]{5-\sqrt{3-2\sqrt{5}+3}}\)

\(=\sqrt[4]{5-\sqrt{6-2\sqrt{5}}}\)

\(=\sqrt[4]{5-\sqrt{\left(1-\sqrt{5}\right)^2}}\)

\(=\sqrt[4]{5-\left(\sqrt{5}-1\right)}\)

\(=\sqrt[4]{5-\sqrt{5}+1}\)

\(=\sqrt[4]{6-\sqrt{5}}\)

Trung Nam Truong
Xem chi tiết
Minh Triều
9 tháng 1 2016 lúc 11:12

Điều kiện : x>=0

\(\sqrt{x}+\frac{\sqrt[3]{2-\sqrt{3}}.\sqrt[6]{7+4\sqrt{3}}-x}{\sqrt[4]{9-4\sqrt{5}}.\sqrt{2+\sqrt{5}}+\sqrt{x}}\)

\(=\sqrt{x}+\frac{\sqrt[3]{2-\sqrt{3}}.\sqrt[6]{\left(2+\sqrt{3}\right)^2}-x}{\sqrt[4]{\left(\sqrt{5}-2\right)^2}.\sqrt{2+\sqrt{5}}+\sqrt{x}}\)

\(=\sqrt{x}+\frac{\sqrt[3]{2-\sqrt{3}}.\sqrt[3]{2+\sqrt{3}}-x}{\sqrt{\sqrt{5}-2}.\sqrt{2+\sqrt{5}}+\sqrt{x}}\)

\(=\sqrt{x}+\frac{\sqrt[3]{1}-x}{\sqrt{1}+\sqrt{x}}=\sqrt{x}+\frac{1-x}{1+\sqrt{x}}=\sqrt{x}+\frac{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}{1+\sqrt{x}}\)

\(=\sqrt{x}+1-\sqrt{x}=1\)

Toan Quyen Gaming
Xem chi tiết
pham trung thanh
14 tháng 10 2017 lúc 19:26

\(\sqrt{3-2\sqrt{2}}=\sqrt{1-2\sqrt{2}+2}=\sqrt{\left(1-\sqrt{2}\right)^2}=\left|1-\sqrt{2}\right|\)

\(\sqrt{5-2\sqrt{6}}=\sqrt{2-2\sqrt{6}+3}=\sqrt{\left(\sqrt{2}-\sqrt{3}\right)^2}=\left|\sqrt{2}-\sqrt{3}\right|\)

\(1< \sqrt{2};\sqrt{2}< \sqrt{3}\)

\(\Rightarrow\sqrt{3-2\sqrt{2}}+\sqrt{5-2\sqrt{6}}=\sqrt{2}-1+\sqrt{3}-\sqrt{2}\)

                                                                      \(=\sqrt{3}-1\)

Võ Thị Quỳnh Giang
14 tháng 10 2017 lúc 19:31

ta có: \(\sqrt{3-2\sqrt{2}}+\sqrt{5-2\sqrt{6}}=\sqrt{\left(\sqrt{2}-1\right)^2}+\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}.\)

\(\sqrt{2}-1+\sqrt{3}-\sqrt{2}=\sqrt{3}-1\)

phạm thị hồng anh
Xem chi tiết
Trần Việt Linh
8 tháng 8 2016 lúc 14:43

1) \(\frac{\sqrt{6-2\sqrt{5}}}{2-2\sqrt{5}}=\frac{\sqrt{\left(\sqrt{5}-1\right)^2}}{2\left(1-\sqrt{5}\right)}=\frac{\sqrt{5}-1}{2\left(1-\sqrt{5}\right)}=-\frac{1}{2}\)

2) \(\frac{\sqrt{7-4\sqrt{3}}}{1-\sqrt{3}}=\frac{\sqrt{\left(2-\sqrt{3}\right)^2}}{1-\sqrt{3}}=\frac{2-\sqrt{3}}{1-\sqrt{3}}\)

Hà Thị Phương Anh
Xem chi tiết
Nguyễn Thị BÍch Hậu
4 tháng 7 2015 lúc 20:51

đk: x>=0; x khác 3

a) \(P=\frac{\sqrt{x}-3}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}-\frac{5}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}+\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}-3}=\frac{\sqrt{x}-3-5+x-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}=\frac{x+\sqrt{x}-12}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\)

\(P=\frac{\left(\sqrt{x}+4\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}=\frac{\sqrt{x}+4}{\sqrt{x}+2}\)

b) \(P=\frac{\sqrt{x}+2+2}{\sqrt{x}+2}=1+\frac{2}{\sqrt{x}+2}\)

ta có: \(x\ge0\Rightarrow\sqrt{x}\ge0\Leftrightarrow\sqrt{x}+2\ge2\Leftrightarrow\frac{2}{\sqrt{x}+2}\le1\Leftrightarrow1+\frac{2}{\sqrt{x}+2}\le2\Rightarrow MaxP=2\Rightarrow x=0\)

Mãi mãi là một tứ diệp t...
Xem chi tiết
asmr
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 8 2023 lúc 0:13

a: \(A=\left(2\sqrt{5}-3\sqrt{5}+3\sqrt{5}\right)\cdot\sqrt{5}=2\sqrt{5}\cdot\sqrt{5}=10\)

\(B=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}+\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\)

\(=\sqrt{x}-1+\sqrt{x}=2\sqrt{x}-1\)

b: A=2B

=>\(10=4\sqrt{x}-2\)

=>\(4\sqrt{x}=12\)

=>x=9(nhận)

vy
Xem chi tiết
tranhuuphuoc
Xem chi tiết
Tuyển Trần Thị
28 tháng 8 2017 lúc 17:58

nx \(\frac{1}{\sqrt{n}+\sqrt{n+4}}\) =\(\frac{\sqrt{n+4}-\sqrt{n}}{\left(\sqrt{n+4}+\sqrt{n}\right)\left(\sqrt{n+4}-\sqrt{n}\right)}=\frac{\sqrt{n+4}-\sqrt{n}}{n+4-n}=\frac{1}{4}.\left(\sqrt{n+4}-\sqrt{n}\right)\)

ap dung ta co \(=\frac{1}{4}\left(-1+\sqrt{5}-\sqrt{5}+\sqrt{9}+...-\sqrt{2009}+\sqrt{2013}\right)\) 

=\(\frac{1}{4}\left(\sqrt{2013}-1\right)\)