với x khác 0 tìm GTNN của A= (x2-2x+2014)/x2
Tìm GTNN của bt:
S= x2 -2x+2018 / x2 với x>0
\(S=\dfrac{2018x^2-2.2018x+2018^2}{2018x^2}=\dfrac{2017x^2+x^2-2.2018x+2018^2}{2018x^2}=\dfrac{2017}{2018}+\dfrac{\left(x-2018\right)^2}{x^2}\ge\dfrac{2017}{2018}\)
\(S_{min}=\dfrac{2017}{2018}\) khi \(x=2018\)
Bài 6: a)Tìm GTLN, GTNN của biểu thức sau:
a. x2 – 6x +11 b. –x2 + 6x – 11
c) Chứng minh rằng: x2 + 2x + 2 > 0 với x Z
c: \(=\left(x+1\right)^2+1>0\forall x\)
Trả lời:
a, \(x^2-6x+11=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\forall x\)
Dấu "=" xảy ra khi x - 3 = 0 <=> x = 3
Vậy GTNN của biểu thức bằng 2 khi x = 3
b, \(-x^2+6x-11=-\left(x^2-6x+11\right)=-\left(x^2-6x+9+2\right)=-\left[\left(x-3\right)^2+2\right]\)
\(=-\left(x-3\right)^2-2\le-2\forall x\)
Dấu "=" xảy ra khi x - 3 = 0 <=> x = 3
Vậy GTLN của biểu thức bằng - 2 khi x = 3
c, \(x^2+2x+2=x^2+2x+1+1=\left(x+1\right)^2+1\ge1>0\forall x\inℤ\) (đpcm)
Dấu "=" xảy ra khi x + 1 = 0 <=> x = - 1
với x≠o,tìm giá trị nhỏ nhất của biểu thức : A=\(\dfrac{ }{ }\)x2 - 2x + 2014 : x2
\(A=\dfrac{-x^2-2x+2014}{x^2}=\dfrac{2014}{x^2}-\dfrac{2}{x}-1=2014\left(\dfrac{1}{x}-\dfrac{1}{2014}\right)^2-\dfrac{2015}{2014}\ge-\dfrac{2015}{2014}\)
\(A_{min}=-\dfrac{2015}{2014}\) khi \(x=2014\)
tìm GTNN của \(A=\frac{x^2-2x+2014}{x^2}\) với x khác 0
\(A=1-\frac{2}{x}+\frac{2014}{x^2}\)
đặt 1/x=t ta có
\(A=1-2t+2014t^2\)
\(=2014\left(t^2-\frac{1}{1007}+\frac{1}{2014}\right)\)
=\(2014[\left(t-\frac{1}{2014}\right)^2-\left(\frac{1}{2014}\right)^2+\frac{1}{2014}]\)
=\(2014\left(t-\frac{1}{2014}\right)^2+\frac{2013}{2014}\)\(\ge\frac{2013}{2014}\)
dấu''='' xảy ra khi t-1/2014=0 <=>1/x=1/2014=>x=2014
Ta có : \(A=\frac{x^2-2x+2014}{x^2}=\frac{2014x^2-4028x+2014^2}{x^2}=\frac{2013x^2+\left(x^2-4028x+2014^2\right)}{x^2}\)
\(=\frac{2013x^2}{x^2}+\frac{\left(x-2014\right)^2}{x^2}=2013+\frac{\left(x-2014\right)^2}{x^2}\)
Vì \(\frac{\left(x-2014\right)^2}{x^2}\ge0\forall x\)
Nên : \(A=2013+\frac{\left(x-2014\right)^2}{x^2}\ge2013\forall x\)
Vậy Amin = 2013 khi x = 2014
tìm GTNN hoặc GTLN của A = 3x2+2x-3
B = (x2+x+20): x2 +x +5
A=3(x^2+2/3x-1)
=3(x^2+2*x*1/3+1/9-10/9)
=3(x+1/3)^2-10/3>=-10/3
Dấu = xảy ra khi x=-1/3
\(B=1+\dfrac{15}{x^2+x+5}=1+\dfrac{15}{\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}}< =1+15:\dfrac{19}{4}=1+\dfrac{60}{19}=\dfrac{79}{19}\)
Dấu = xảy ra khi x=-1/2
a. tìm gtnn của
A= (x2-2x)2+10.(x2-2x)2+39
b. tìm gtln của
B=4x-2x2+1
nhanh giúp mình với ạ, mình đang gấp
b: Ta có: \(B=-2x^2+4x+1\)
\(=-2\left(x^2-2x-\dfrac{1}{2}\right)\)
\(=-2\left(x^2-2x+1-\dfrac{3}{2}\right)\)
\(=-2\left(x-1\right)^2+3\le3\forall x\)
Dấu '=' xảy ra khi x=1
1. cho x+y = 1 . tìm GTNN của biểu thức C = x2 + y2
2. cho x + 2y =1 . tìm GTNN của biểu thức P = x2 + 2y2
3. cho x + y =1 . tìm GTNN của biểu thức G = 2x2 + y2
4. cho x + y =1 . tìm GTNN của biểu thức H = x2 + 3y2
5. cho 2x + y =1 . tìm GTNN của biểu thức I = 4x2 + 2y2
6. tìm các số thực thõa mãn Pt :
2x2 + 5y2 + 8x - 10y + 13 = 0
Áp dụng Bunyakovsky, ta có :
\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)
=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)
=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)
Mấy cái kia tương tự
Cho phân thức A = x2+x+1/x2+2x+1 tìm GTLN
B = x2+x+1/x2+1 tìm GTLN và GTNN
1.Tìm GTNN của Bthức : B= 4x2- 6x+1 : (x-2)2 với x ≠ 2
2. Tìm GTLN của Bthức: C= x2 + 4x - 14 : x2 -2x +1 với x≠ 1
giúp mình với ạ, mình cảm ơn nhiều ạ
1.
Đặt \(x-2=t\ne0\Rightarrow x=t+2\)
\(B=\dfrac{4\left(t+2\right)^2-6\left(t+2\right)+1}{t^2}=\dfrac{4t^2+10t+5}{t^2}=\dfrac{5}{t^2}+\dfrac{2}{t}+4=5\left(\dfrac{1}{t}+\dfrac{1}{5}\right)^2+\dfrac{19}{5}\ge\dfrac{19}{5}\)
\(B_{min}=\dfrac{19}{5}\) khi \(t=-5\) hay \(x=-3\)
2.
Đặt \(x-1=t\ne0\Rightarrow x=t+1\)
\(C=\dfrac{\left(t+1\right)^2+4\left(t+1\right)-14}{t^2}=\dfrac{t^2+6t-9}{t^2}=-\dfrac{9}{t^2}+\dfrac{6}{t}+1=-\left(\dfrac{3}{t}-1\right)^2+2\le2\)
\(C_{max}=2\) khi \(t=3\) hay \(x=4\)